1. Let $Y_{11}, \ldots, Y_{1 n_{1}}$ be a sample from a population with mean μ_{1} and variance σ_{1}^{2}. Let $Y_{21}, \ldots, Y_{2 n_{2}}$ be a sample from another population with mean μ_{2} and variance σ_{2}^{2}. Define

$$
\bar{Y}_{1}=\sum_{j=1}^{n_{1}} \frac{Y_{1 j}}{n_{1}}, \quad \bar{Y}_{2}=\sum_{j=1}^{n_{2}} \frac{Y_{2 j}}{n_{2}}
$$

(a) Find $E\left(\bar{Y}_{1}-\bar{Y}_{2}\right)$.
(b) If \bar{Y}_{1} and \bar{Y}_{2} are independent, find $\operatorname{var}\left(\bar{Y}_{1}-\bar{Y}_{2}\right)$.
(c) If the two populations are normal (and \bar{Y}_{1} and \bar{Y}_{2} are independent), then does $\bar{Y}_{1}-\bar{Y}_{2}$ have a normal distribution? Explain why or why not.
2. Suppose $Y_{1}, Y_{2}, \ldots, Y_{n}$ are independent random variables with mean μ and variance σ^{2}.
(a) Show that

$$
(n-1) S^{2}=\sum_{i=1}^{n} Y_{i}^{2}-n \bar{Y}^{2} .
$$

(b) Show that $E\left(S^{2}\right)=\sigma^{2}$. (Hint: Use the fact that $\left.\operatorname{var}(Y)=E\left(Y^{2}\right)-[E(Y)]^{2}\right]$.)
3. Let Y_{1}, Y_{2}, Y_{3} be independent random variables with means $\mu_{1}, \mu_{2}, \mu_{3}$ and a common variance σ^{2}. Define

$$
\bar{Y}=\frac{1}{3} \sum_{i=1}^{3} Y_{i} .
$$

(a) Find the covariance between $Y_{1}-\bar{Y}$ and \bar{Y}.
(b) Find the expected value of $\left(Y_{1}+2 Y_{2}-Y_{3}\right)^{2}$.
4. Let Y_{1} and Y_{2} be random variables with expected values μ_{1} and μ_{2} and variances σ_{1}^{2} and σ_{2}^{2}.
(a) Show that $\operatorname{cov}\left(Y_{1}+Y_{2}, Y_{1}-Y_{2}\right)=\sigma_{1}^{2}-\sigma_{2}^{2}$.
(b) If $W=Y_{1}+Y_{2}$ and $V=Y_{1}-Y_{2}$, then under what condition(s) can we be assured that W and V are independent random variables?
5. Suppose Y_{1}, \ldots, Y_{5} are independent random variables, each having a normal distribution with mean 0 and variance 1. Let $\bar{Y}=(1 / 5) \sum_{i=1}^{5} Y_{i}$ and let Y_{6} be another independent observation, also having a $\mathrm{N}(0,1)$ distribution. Let $W=\sum_{i=1}^{5} Y_{i}^{2}$ and let $U=\sum_{i=1}^{5}\left(Y_{i}-\bar{Y}\right)^{2}$. Give the distribution of each of the following quantities, and carefully explain/justify your answer in each case.
(a) W
(b) U (c) $\sqrt{5} Y_{6} / \sqrt{W}$
(d) $2 Y_{6} / \sqrt{U}$
(e) $20 \bar{Y}^{2} / U$ (f) $4 Y_{6}^{2} / U(\mathrm{~g}) U / 4 Y_{6}^{2}$
(h) $\bar{Y}+Y_{6}$

