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Setup of Linear Regression Model

▶ We now consider the regression model in which a response
variable Y is related to one or more explanatory or predictor
variables X1,X2, . . . ,Xk−1.

▶ For a random sample of n individuals, our model is

Yi = β0+β1Xi1+β2Xi2+· · ·+βk−1Xi ,k−1+ϵi , ϵi
indep∼ N(0, σ2)
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Setup of Linear Regression Model

▶ This model can be written in matrix form as

Y = Xβ + ϵ, ϵ ∼ MVN(0, σ2I n)

where

Y =

Y1
...
Yn

 , X =


1 X11 · · · X1,k−1

1 X21 · · · X2,k−1
...

...
. . .

...
1 Xn1 · · · Xn,k−1

 ,

ϵ =

ϵ1...
ϵn

 , β =


β0
β1
...

βk−1
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Likelihood for Linear Regression Model

▶ Based on this normal model, the likelihood is:

L(β, σ2|X , y) = (2πσ2)−
n
2 e−

1
2σ2 (y−Xβ)

′
(y−Xβ)

▶ Note that the least squares estimates of β and σ2 are:

b̂ = (X
′
X )−1X

′
y , σ̂2 =

(y − Xb̂)′(y − Xb̂)
n − k
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Likelihood for Linear Regression Model

Then L(β, σ2|X , y)

∝ σ−n exp{− 1
2σ2 (y

′
y − 2β

′
X

′
y + β

′
X

′
Xβ)}

= σ−n exp
{
− 1

2σ2

(
y

′
y − 2β

′
X

′
y + β

′
X

′
Xβ

− 2[(X
′
X )−1X

′
y ]

′
X

′
y + 2[(X

′
X )−1X

′
y ]

′
X

′
X [(X

′
X )−1X

′
y ]
)}

Since X
′
y = X

′
Xb̂,

= σ−n exp
{
− 1

2σ2

(
y

′
y − 2β

′
X

′
Xb̂ + β

′
X

′
Xβ

− 2[(X
′
X )−1X

′
Xb̂]

′
X

′
Xb̂

+ 2[(X
′
X )−1X

′
Xb̂]

′
X

′
X [(X

′
X )−1X

′
Xb̂]

)}
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Likelihood for Linear Regression Model

= σ−n exp
{
− 1

2σ2

(
y

′
y − 2b̂

′
X

′
y + b̂

′
X

′
Xb̂ + 2b̂

′
X

′
Xb̂

− b̂
′
X

′
Xb̂ − 2b̂

′
X

′
Xb̂ + 2b̂

′
X

′
Xb̂ − 2β

′
X

′
Xb̂ + β

′
X

′
Xβ

)}
= σ−n exp

{
− 1

2σ2 [(y − Xb̂)
′
(y − Xb̂) + b̂

′
X

′
Xb̂

− 2β
′
X

′
Xb̂ + β

′
X

′
Xβ]

}
= σ−n exp

{
− 1

2σ2 [σ̂
2(n − k) + (β − b̂)

′
X

′
X (β − b̂)]

}
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Noninformative Priors for β and σ2

Consider the independent vague priors

p(β) ∝ 1, β ∈ (−∞,∞)k

and p(σ2) =
1

σ
, σ ∈ (0,∞)

Then the joint posterior for β and σ2 is:

p(β, σ2|X , y) ∝ L(β, σ2|X , y)p(β)p(σ2)

∝ σ−n−1 exp{− 1
2σ2 [σ̂

2(n − k) + (β − b̂)
′
X

′
X (β − b̂)]}
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Noninformative Priors for β and σ2

▶ Using the transformation s = σ−2 with Jacobian |J| = 1
2s

−3/2:

p(β, s|X , y) ∝ (s−1/2)−n−1 exp
{
−1

2s[σ̂
2(n − k)

+ (β − b̂)
′
X

′
X (β − b̂)]

}(
1
2s

−3/2
)

∝ (s)
n
2−1 exp

{
−1

2s[σ̂
2(n − k) + (β − b̂)

′
X

′
X (β − b̂)]

}
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Noninformative Priors for β and σ2

▶ To get the marginal posterior for β, integrate out s:

So p(β|X , y)

=

∫ ∞

0
(s)

n
2−1 exp{−1

2 [σ̂
2(n − k) + (β − b̂)

′
X

′
X (β − b̂)]s} ds

=
Γ(n2 )

1
2 [σ̂

2(n − k) + (β − b̂)′X ′X (β − b̂)]
n
2

∝ [(n − k) + (β − b̂)
′
σ̂−2X

′
X (β − b̂)]−

n
2

▶ This is the kernel of a multivariate t-distribution with (n − k)
degrees of freedom and covariance matrix

(n − k)σ̂2(X
′
X )−1

n − k − 2
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Noninformative Priors for β and σ2

▶ Now we integrate β out of the joint posterior to get the
marginal posterior for σ2:

p(σ2|X , y) ∝ (σ)−n−1e−
1

2σ2 σ̂
2(n−k)

∫ ∞

−∞
e−

1
2σ2 (β−b̂)

′X
′
X (β−b̂) dβ

∝ (σ)−n−1e−
1

2σ2 σ̂
2(n−k)(2πσ2)

k/2

∝ (σ2)−
1
2 (n−k−1)−1e−

1
2 σ̂2(n−k)

σ2

which is clearly an IG(12(n − k − 1), 12 σ̂
2(n − k)) posterior

distribution.

▶ Example: Oxygen update data on course web page
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Conjugate Analysis for the Linear Model

▶ If we have good prior knowledge that can help us specify
priors for β and σ2, we can use conjugate priors.

▶ Following the procedure in Christensen, Johnson, Branscum,
and Hanson (2010), we will actually specify a prior for the

error precision parameter τ =
1

σ2
:

τ ∼ gamma(a, b)

▶ This is analogous to placing an inverse gamma prior on σ2.

▶ Then our prior on β will depend on τ :

β|τ ∼ MVN
(
δ, τ−1[X̃

−1
D(X̃

−1
)
′
]
)

(Note τ−1 = σ2)
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Conjugate Analysis for the Linear Model

▶ We will specify a set of k a priori reasonable hypothetical
observations having predictor vectors x̃1, . . . , x̃k (these —
along with a column of 1’s — will form the rows of X̃ ) and
prior expected response values ỹ1, . . . , ỹk .

▶ Our MVN prior on β is equivalent to a MVN prior on X̃β:

X̃β|τ ∼ MVN(ỹ , τ−1D)

▶ Hence prior mean of X̃β is ỹ , implying that the prior mean δ

of β is X̃
−1

ỹ .
▶ D−1 is a diagonal matrix whose diagonal elements represent

the weights of the “hypothetical” observations.

▶ Intuitively, the prior has the same “worth” as tr(D−1)
observations.
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Conjugate Analysis for the Linear Model

▶ The joint density is

p(β, τ,X , y) ∝ τn/2τn/2|D|−1/2τ a−1e−bτ

× exp
{
−1

2(Xβ − y)
′
(τ−1I )−1(Xβ − y)

}
× exp

{
−1

2(X̃β − ỹ)
′
(τ−1D)−1(X̃β − ỹ)

}

▶ It can be shown that the conditional posterior for β|τ is:

β|τ,X , y ∼ MVN
(
β̂, τ−1(X

′
X + X̃

′
D−1X̃ )−1

)
where

β̂ = (X
′
X + X̃

′
D−1X̃ )−1[X

′
y + X̃

′
D−1ỹ ]
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Conjugate Analysis for the Linear Model

▶ And the posterior for τ is:

τ |X , y ∼ gamma
(n + 2a

2
,
n + 2a

2
s∗
)

where

s∗ =
(y − X β̂)

′
(y − X β̂) + (ỹ − X̃ β̂)

′D−1(ỹ − X̃ β̂) + 2b

n + 2a

▶ The subjective information is incorporated via β̂ (a function of
X̃ and ỹ) and s∗ (a function of β̂, a, and b).
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Conjugate Analysis for the Linear Model

▶ While the conditional posterior p(β|τ,X , y) is multivariate
normal, the marginal posterior p(β|X , y) is a (scaled)
noncentral multivariate t-distribution.

▶ In making inference about β, it is easier to use the conditional
posterior for β|τ .

▶ Rather than basing inference on the posterior for β|τ̂ (by
plugging in a posterior estimate of τ), it is more appropriate
to sample random values τ [1], . . . , τ [J] from the posterior
distribution of τ , and then randomly sample from the
conditional posterior of β|τ [j], j = 1, . . . , J.

▶ Posterior point estimates and interval estimates can then be
based on those random draws.
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Prior Specification for the Conjugate Analysis

▶ We will specify a matrix X̃ of hypothetical predictor values.

▶ We also specify (via expert opinion or previous knowledge) a
corresponding vector ỹ of reasonable response values for such
predictors.

▶ The number of such “hypothetical observations” we specify
must be one more than the number of predictor variables in
the regression.

▶ Our prior mean for β will be X̃
−1

ỹ .
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Prior Specification for the Conjugate Analysis

▶ We also must specify the shape parameter a and the rate
parameter b for the gamma prior on τ .

▶ One strategy is to choose a first, based on the degree on
confidence in our prior.

▶ For a given a, we can view the prior as being “worth” the
same as 2a sample observations.

▶ A larger value of a indicates we are more confident in our
prior.
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Prior Specification for the Conjugate Analysis

▶ Here is one strategy for specifying b:

▶ Consider any of the “hypothetical observations” — take the
first, for example.

▶ If ỹ1 is the prior expected response for a hypothetical
observation with predictors x̃1, then let ỹmax be the a priori
maximum reasonable response for a hypothetical
observation with predictors x̃1.

▶ Then (based on the normal distribution) let a prior guess for σ

be
ỹmax − ỹ1

1.645
.

▶ Since τ =
1

σ2
, this gives us a reasonable guess for τ .

▶ Set this guess for τ equal to the mean
a

b
of the gamma prior

for τ .

▶ Since we have already specified a, we can solve for b.
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Example of a Conjugate Analysis

▶ Example in R with Automobile Data Set

▶ We can get point and interval estimates for τ (and thus for
σ2).

▶ We can get point and interval estimates for the elements of β
most easily by drawing from the posterior distributions of τ
and then β|τ .
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Bayesian Regression with rstanarm

▶ The R package rstanarm allows for estimation of Bayesian
regression model via simulation of parameter values from their
posterior.

▶ This approach allows us to avoid having to derive the
posterior explicitly.

▶ For the normal regression model, we already derived the
posterior with our approach.

▶ But for regression models with non-normal responses,
conjugate priors for the regression coefficients will not exist.
So simulating from their posterior distributions is the only
workable approach.

▶ The rstanarm package uses rstan behind the scenes to
estimate several common Bayesian regression models.
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Parts of the stan glm function call

▶ The R function stan glm in the rstanarm package estimates
any of several Bayesian regression models via simulation.

▶ For a model for a normal response, we specify
method="gaussian" in the call of the stan glm function.

▶ We can also provide the hyperparameters of (typically) normal
priors on the intercept β0 and the model coefficients
β1, β2, . . ..

▶ We can put another prior on the unknown standard deviation
σ of the response (the book suggests using an exponential
prior for σ).

▶ Finally, we specify the details of the MCMC like the number
of iterations, and the number of chains generated (for
diagnostic purposes).
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Output of the stan glm function

▶ Various MCMC diagnostic functions in the rstanarm package
give trace plots, autocorrelation function plots, density plots,
etc., to gauge convergence of the MCMC algorithm.

▶ The tidy function presents a summary of the Bayesian
posterior estimation of the regression coefficients.

▶ The posterior predict function and the
posterior interval function give a point prediction of the
response value and a posterior prediction interval of the
response value, given a set of specified predictor value(s).

▶ We can also plot the density function of the posterior
predictive model.

▶ See R example on the “cars” data set.
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A Bayesian Approach to Model Selection

▶ In exploratory regression problems, we often must select which
subset of our potential predictor variables produces the “best
model.”

▶ A Bayesian may consider the possible models and compare
them based on their posterior probabilities.

▶ Note that if the value of coefficient βj is 0, then variable Xj is
not needed in the model.

▶ Let βj = zjbj for each j , where zj = 0 or 1 and bj ∈ (−∞,∞).

▶ Then our model is

Yi = z0b0+z1b1Xi1+z2b2Xi2+· · ·+zk−1bk−1Xi ,k−1+ϵi , i = 1, . . . , n

where any zj = 0 indicates that this predictor variable does
not belong in the model.
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A Bayesian Approach to Model Selection

Example: Oxygen uptake example:
X1 = group, X2 = age, X3 = group × age:

z = (z0, z1, z2, z3) True E [Y |x ,b, z ]
(1,0,0,0) b0
(1,1,0,0) b0 + b1 group
(1,0,1,0) b0 + b2 age
(1,1,1,0) b0 + b1 group + b2 age
(1,1,1,1) b0 + b1 group + b2 age + b3 group× age
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A Bayesian Approach to Model Selection

▶ For each possible value of the vector z , we calculate the
posterior probability for that model:

▶ For any particular z∗, say:

p(z∗|y ,X ) =
p(z∗)p(y |X , z∗)∑
z
p(z)p(y |X , z)

▶ This involves a prior p(·) on each possible model — a
noninformative approach would be to let all these prior
probabilities be equal.

▶ If there are a large number of potential predictors, we would
use a method called Gibbs sampling to search over the many
models.
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Example of Bayesian Model Selection

▶ Example in R with Oxygen Data Set

▶ We can consider all possible subsets of set of predictor
variables:

▶ Result: The model with the interaction omitted has the
highest posterior probability.

▶ We can consider only certain subsets (here, we only consider
including the interaction term when both first-order terms
appear):

▶ Result: Again, the model with the interaction omitted has the
highest posterior probability (by a greater margin).
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The Posterior Predictive Distribution of the Data

▶ Suppose we have built our Bayesian regression model using
response data y and explanatory data matrix X .

▶ Suppose we consider future observations whose explanatory
variable values are in the matrix X∗.

▶ What is the marginal distribution of the corresponding future
response values y∗?

▶ This is the posterior predictive distribution

p(y∗|y ,X∗,X ).

▶ We will use this later as a tool for checking the fit of our
regression model.
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The Posterior Predictive Distribution of the Data

▶ In our analysis with the noninformative priors, note that

p(y∗,β, σ2|y ,X∗,X ) = p(y∗|β, σ2,X∗)p(β, σ2|X , y)

▶ Then integrating out β and σ2, it can be shown that the
posterior predictive distribution of y∗ is multivariate-t with
(n − k) degrees of freedom so that

E (y∗) = X∗β̂ and

covariance matrix =
(n − k)σ̂2

n − k − 2
[I + X∗(X

′
X )−1X∗′

]

▶ Intuition: Our original data are multivariate normal, given the
model.

▶ Our future predictions are multivariate-t (reflects added
uncertainty about the model).
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Posterior Prediction of Response Values in Regression

Example 3: In the regression setting, we have shown that the
posterior predictive distribution for a new response vector y∗ is
multivariate-t.

▶ To check model fit, we can generate samples from the
posterior predictive distribution (letting X ∗ = the observed
sample X ) and plot the values against the y -values from the
original sample.

▶ If an observed yi falls far from the center of the posterior
predictive distribution, this i-th observation is an outlier.

▶ If this occurs for many y -values, we would doubt the
adequacy of the model.

▶ See R example (small automobile data set).
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Posterior Prediction Intervals in Regression

▶ We can also make predictions and “prediction intervals” for
new responses with specified predictor values.

▶ For example, consider a new observation with predictor
variable values in the vector x∗ = (1, x∗1 , x

∗
2 , . . . , x

∗
k−1) (or the

predictor values for several new observations could be
contained in the matrix X ∗).

▶ We can generate the posterior predictive distribution with X ∗

and compute the posterior median (for a point prediction) or
posterior quantiles (for a prediction interval).

▶ See R example.
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Posterior Prediction Using bayesrules Package

▶ The bayesrules package has some nice functions to do
posterior predictions and diagnostics for models fit using the
stan glm function.

▶ The ppc intervals function gives prediction intervals
corresponding to the observations in the sample (or to
hypothetical future observations).

▶ If we do 95% prediction intervals for observations in the
sample, we could assess model fit by checking how many
observed y values in the sample fall within their corresponding
95% prediction interval (hopefully around 95% of them do).
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Measures of Predictive Accuracy

▶ The prediction summary function gives several numerical
measures of predictive accuracy.

▶ median absolute error (MAE): measures the typical
difference between the observed responses and their posterior
predictive means

▶ scaled median absolute error: measures the typical number
of std deviations that the observed responses fall from their
posterior predictive mean

▶ within 50 statistic: measures the proportion of observed
response values that fall within their 50% posterior prediction
interval.

▶ within 95 statistic: measures the proportion of observed
response values that fall within their 95% posterior prediction
interval.
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Concerns with Measures of Predictive Accuracy

▶ However, these are measures of how well the model predicts
observations that are within the sample (the observations that
were used to fit the model).

▶ These measures may overstate how well the model would
predict the response value of an observation that is outside
the sample.
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Measures of Out-of-Sample Predictive Accuracy

▶ To assess the prediction of out-of-sample data, we use an
approach called cross-validation.

▶ We split the data into subsets, and we use some of the
subsets to “train” the model (i.e., estimate the parameters).

▶ Then we call the held-out observations the “test” data and we
use the fitted model to predict the response values of the
“test” observations.

▶ Since we know the actual response values of the held-out
observations, we can compare the predicted values to the
actual values to assess the predictive accuracy.

▶ The cross-validation MAE, scaled MAE, etc., can be
calculated for a set of models under consideration, and we
might choose the model that has a low cross-validation MAE.
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Expected Log Predictive Density (ELPD)

▶ Another tool to compare Bayesian regression models is the
expected log-predictive density (ELPD).

▶ If the value of the posterior predictive density at ynew is large,
this means that the new data value ynew is compatible with
the predictive model for the responses.

▶ The ELPD is E (log f (ynew |y)), the value of the log posterior
predictive density at ynew , averaged across all possible values
of ynew .

▶ A model with a higher ELPD has greater posterior predictive
accuracy when using the model to predict new data points.

▶ BIC is another very common tool for model selection (review
the end of the Chapter 8 notes to see the relationship between
the BIC and Bayes Factors).
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