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Setup of Linear Regression Model

» We now consider the regression model in which a response

variable Y is related to one or more explanatory or predictor
variables X1, Xo, ..., Xk_1.

» For a random sample of n individuals, our model is

ind
Y; = Bo+BiXin+BoXipt- Bk 1 Xik_1+ei, € ~° N(0,0?)
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Setup of Linear Regression Model

» This model can be written in matrix form as

Y =XB+¢€, e~ MVN(0,5°1,)

where
I PR o
Y=\, X=| . . 7:7 ’
Y 1 X o Xoger
o« |
e= ||, B=] .
e »Bk-—l
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Likelihood for Linear Regression Model

» Based on this normal model, the likelihood is:

n

L(B,0% X, y) = (2r02) B e 22V -XB) (y-XB)

» Note that the least squares estimates of 3 and o2 are:

(y — Xb)'(y — Xb)

b=(X'X)"'X'y, &%= o
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Likelihood for Linear Regression Model

Then L(B,0%|X,y)

x o "exp{— 5 (y'y — 28 X'y + B X' XB)}

—o"exp{ 3k (v'y - 28 X'y + B X' X8
= 2[(X' X)Xy Xy + 2(X X)X y) X X[(X X)X y]) |
Since X'y = X' Xb,

=g " exp{—ﬁ (y/y — ZB/X/XB + B/X/XB
—2[(X'X)"*X'Xb]' X' Xb
+ 2[(x’X)—1x’xB]’x’x[(x’X)—lx’xB]) }
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Likelihood for Linear Regression Model

=0 exp{ 54 (v'y - 2b X'y + b X' Xb+2b X Xb

— b X'Xb—2b X' Xb+2bX Xb—28XXb+ B’x/xza) }
= o "exp{ ~ L[y — XB) (y — Xb) + b X' xb

_28' X' Xb + B’x’xg]}

= o "exp{— L [6%(n — k) + (8 - B) X' X(8 - b)]}
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Noninformative Priors for 3 and o2

Consider the independent vague priors

Then the joint posterior for 3 and o2 is:

p(B,0% X, y) x L(B,5°| X, y)p(8)p(c?)
o o~ " Lexp{—5L:[6%(n — k) + (B8 — b) X' X (B — b)]}
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Noninformative Priors for 3 and o2

> Using the transformation s = o2 with Jacobian |J| = } s3/2,

p(B,5I1X.y) ox (s %)L exp{ ~1s[6%(n — k)
— B)X'X(8 - b)|} (3572)
exp{ —3s[6%(n — k) + (8 — b) X' X(8 — b)]]

+(8
g

o (s)
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Noninformative Priors for 3 and o2

» To get the marginal posterior for 3, integrate out s:

So p(B|X,y)
= |0 ep(-416% 0~ k) + (8 B X' X(8 - B)s} és
r(2)
3[6%(n— k) + (B — by X'X(B — b)]
x[(n—K)+(B-b)s2X'X(8 - b)] 2

NS

» This is the kernel of a multivariate t-distribution with (n — k)
degrees of freedom and covariance matrix

(n— k)82(X' Xx)~1
n—k—2
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Noninformative Priors for 3 and o2

> Now we integrate 3 out of the joint posterior to get the
marginal posterior for o

PIX.y) x (o) "R 20D [ g B BXX B g

x (o,)fnfle—zfigffz(n—k)(271_0_2)k/2

%&Q(nfk)
2

o (02)7%(n7k71)flef

o

which is clearly an IG(3(n — k — 1), £6%(n — k)) posterior
distribution.

> Example: Oxygen update data on course web page
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Conjugate Analysis for the Linear Model

» If we have good prior knowledge that can help us specify
priors for 3 and o2, we can use conjugate priors.

» Following the procedure in Christensen, Johnson, Branscum,
and Hanson (2010), we will actually specify a prior for the
1

error precision parameter 7 = —:
g

T ~ gamma(a, b)

» This is analogous to placing an inverse gamma prior on 0.

» Then our prior on 3 will depend on 7:
Blr ~ MVN (5, T—l[)"(‘lo()”(‘l)’])

(Note 771 = ¢2)
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Conjugate Analysis for the Linear Model

» We will specify a set of k a priori reasonable hypothetical

observations having predictor vectors X1,...,X (these —
along with a column of 1's — will form the rows of X) and
prior expected response values ¥q,...,¥,.

» Our MVN prior on 3 is equivalent to a MVN prior on X3:
XB|r ~ MVN(y,77'D)

> Hence prior mean of X3 is y, implying that the prior mean &
of Bis X 'y.

» D~ !is a diagonal matrix whose diagonal elements represent
the weights of the “hypothetical” observations.

> Intuitively, the prior has the same “worth” as tr(D~1)
observations.
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Conjugate Analysis for the Linear Model

» The joint density is
P(,B, T X,y) o 7_n/27_n/2|D|—1/27_a—1e—b7—
xexp{-3(XB—y) (- ) H(XB-y)}

» It can be shown that the conditional posterior for 3|7 is:
Blr. X,y ~ MUN(B, 7 (X' X + X D7 X))

where

A

B=(X'X+XD'X) X'y + X D1y
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Conjugate Analysis for the Linear Model

» And the posterior for 7 is:

n+2a n+2a ,
T\X,ngamma< 5 ,Ts)

where

«_(y=XB)(y —XB)+(y — XB)D}(y — XB) +2b

° n+2a

» The subjective information is incorporated via ,3 (a function of
X and y) and s* (a function of 3, a, and b).

David B. Hitchcock E-Mail: hitchcock@stat.sc.edu Chapter 9: Bayesian Linear Regression



Conjugate Analysis for the Linear Model

» While the conditional posterior p(3|7, X, y) is multivariate
normal, the marginal posterior p(3|X,y) is a (scaled)
noncentral multivariate t-distribution.

» In making inference about 3, it is easier to use the conditional
posterior for 3|7.

» Rather than basing inference on the posterior for 3|7 (by
plugging in a posterior estimate of 7), it is more appropriate
to sample random values 711, ... 7] from the posterior
distribution of 7, and then randomly sample from the
conditional posterior of B|7U),j =1,...,J.

» Posterior point estimates and interval estimates can then be
based on those random draws.
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Prior Specification for the Conjugate Analysis

> We will specify a matrix X of hypothetical predictor values.

» We also specify (via expert opinion or previous knowledge) a
corresponding vector y of reasonable response values for such
predictors.

» The number of such “hypothetical observations” we specify
must be one more than the number of predictor variables in
the regression.

» Our prior mean for 3 will be X .
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Prior Specification for the Conjugate Analysis

> We also must specify the shape parameter a and the rate
parameter b for the gamma prior on 7.

» One strategy is to choose a first, based on the degree on
confidence in our prior.

> For a given a, we can view the prior as being “worth” the
same as 2a sample observations.

> A larger value of a indicates we are more confident in our
prior.
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Prior Specification for the Conjugate Analysis

P> Here is one strategy for specifying b:

» Consider any of the “hypothetical observations” — take the
first, for example.

> If y, is the prior expected response for a hypothetical
observation with predictors X1, then let ¥, be the a priori
maximum reasonable response for a hypothetical
observation with predictors Xi.

» Then (based on the normal distribution) let a prior guess for o
ymax — yl
b T eas

: 1 .
> Since 7 = —, this gives us a reasonable guess for 7.
g
. a .
> Set this guess for 7 equal to the mean 5 of the gamma prior

for 7.

» Since we have already specified a, we can solve for b.
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Example of a Conjugate Analysis

» Example in R with Automobile Data Set

» \We can get point and interval estimates for 7 (and thus for
2
o).

» We can get point and interval estimates for the elements of 3
most easily by drawing from the posterior distributions of 7
and then j|7.
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Bayesian Regression with rstanarm

» The R package rstanarm allows for estimation of Bayesian
regression model via simulation of parameter values from their
posterior.

» This approach allows us to avoid having to derive the
posterior explicitly.

P For the normal regression model, we already derived the
posterior with our approach.

» But for regression models with non-normal responses,
conjugate priors for the regression coefficients will not exist.
So simulating from their posterior distributions is the only
workable approach.

» The rstanarm package uses rstan behind the scenes to
estimate several common Bayesian regression models.
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Parts of the stan_glm function call

> The R function stan_glm in the rstanarm package estimates
any of several Bayesian regression models via simulation.

» For a model for a normal response, we specify
method="gaussian" in the call of the stan_glm function.

» We can also provide the hyperparameters of (typically) normal
priors on the intercept By and the model coefficients

B1, B2, ..

» We can put another prior on the unknown standard deviation
o of the response (the book suggests using an exponential
prior for o).

» Finally, we specify the details of the MCMC like the number
of iterations, and the number of chains generated (for
diagnostic purposes).
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Output of the stan glm function

» Various MCMC diagnostic functions in the rstanarm package
give trace plots, autocorrelation function plots, density plots,
etc., to gauge convergence of the MCMC algorithm.

» The tidy function presents a summary of the Bayesian
posterior estimation of the regression coefficients.

» The posterior_predict function and the
posterior_interval function give a point prediction of the
response value and a posterior prediction interval of the
response value, given a set of specified predictor value(s).

> We can also plot the density function of the posterior
predictive model.

> See R example on the “cars” data set.
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A Bayesian Approach to Model Selection

P In exploratory regression problems, we often must select which
subset of our potential predictor variables produces the “best
model.”

» A Bayesian may consider the possible models and compare
them based on their posterior probabilities.

» Note that if the value of coefficient 3; is 0, then variable X; is
not needed in the model.

> Let 3; = z;b; for each j, where z; = 0 or 1 and b; € (—00,00).

» Then our model is
Yi = 20bp+z1 b1 Xi1+ 2202 Xjo++ - -+zi_1 b1 Xj k—1+€;, i =1,...,n

where any z; = 0 indicates that this predictor variable does
not belong in the model.
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A Bayesian Approach to Model Selection

Example: Oxygen uptake example:
X1 = group, Xo = age, X3 = group X age:

z =(z0,21,22,23) | True E[Y|x, b, 2]
(1,0,0,0) bo
(1,1,0,0) by + by group
(1,0,1,0) by + by age
(1,1,1,0) bg + b1 group + by age
(1,1,1,1) bo + by group + by age + bs group X age
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A Bayesian Approach to Model Selection

» For each possible value of the vector z, we calculate the
posterior probability for that model:

» For any particular z*, say:

) _ p(z)ply|X, z¥)
P(Z ’y,X) - zsz(Z)P(y’X’z)

» This involves a prior p(-) on each possible model — a
noninformative approach would be to let all these prior
probabilities be equal.

» If there are a large number of potential predictors, we would
use a method called Gibbs sampling to search over the many
models.
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Example of Bayesian Model Selection

» Example in R with Oxygen Data Set

> We can consider all possible subsets of set of predictor
variables:

» Result: The model with the interaction omitted has the
highest posterior probability.

» We can consider only certain subsets (here, we only consider
including the interaction term when both first-order terms
appear):

» Result: Again, the model with the interaction omitted has the
highest posterior probability (by a greater margin).
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The Posterior Predictive Distribution of the Data

» Suppose we have built our Bayesian regression model using
response data y and explanatory data matrix X.

» Suppose we consider future observations whose explanatory
variable values are in the matrix X*.

» What is the marginal distribution of the corresponding future
response values y*?

» This is the posterior predictive distribution

p(y*ly, X*, X).

» We will use this later as a tool for checking the fit of our
regression model.
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The Posterior Predictive Distribution of the Data

» In our analysis with the noninformative priors, note that

p(y*, 8,0y, X*, X) = p(y*|B,0% X*)p(B,0%| X, y)

» Then integrating out 3 and o2, it can be shown that the
posterior predictive distribution of y* is multivariate-t with
(n — k) degrees of freedom so that

E(y*) = X*(3 and
(n — k)52

T e x(x X))
n_k_2[+ (X X) ]

covariance matrix =
» Intuition: Our original data are multivariate normal, given the
model.
» Our future predictions are multivariate-t (reflects added
uncertainty about the model).
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Posterior Prediction of Response Values in Regression

Example 3: In the regression setting, we have shown that the
posterior predictive distribution for a new response vector y* is
multivariate-t.

» To check model fit, we can generate samples from the
posterior predictive distribution (letting X* = the observed
sample X) and plot the values against the y-values from the
original sample.

> If an observed y; falls far from the center of the posterior
predictive distribution, this i-th observation is an outlier.

» If this occurs for many y-values, we would doubt the
adequacy of the model.

» See R example (small automobile data set).
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Posterior Prediction Intervals in Regression

> We can also make predictions and “prediction intervals” for
new responses with specified predictor values.

» For example, consider a new observation with predictor
variable values in the vector x* = (1,x{,x3,...,x;_;) (or the
predictor values for several new observations could be
contained in the matrix X™).

» We can generate the posterior predictive distribution with X*
and compute the posterior median (for a point prediction) or
posterior quantiles (for a prediction interval).

> See R example.
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Posterior Prediction Using bayesrules Package

> The bayesrules package has some nice functions to do
posterior predictions and diagnostics for models fit using the
stan_glm function.

» The ppc_intervals function gives prediction intervals
corresponding to the observations in the sample (or to
hypothetical future observations).

> If we do 95% prediction intervals for observations in the
sample, we could assess model fit by checking how many
observed y values in the sample fall within their corresponding
95% prediction interval (hopefully around 95% of them do).
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Measures of Predictive Accuracy

» The prediction_summary function gives several numerical
measures of predictive accuracy.

» median absolute error (MAE): measures the typical
difference between the observed responses and their posterior
predictive means

> scaled median absolute error: measures the typical number
of std deviations that the observed responses fall from their
posterior predictive mean

» within_50 statistic: measures the proportion of observed
response values that fall within their 50% posterior prediction
interval.

> within_95 statistic: measures the proportion of observed
response values that fall within their 95% posterior prediction
interval.
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Concerns with Measures of Predictive Accuracy

> However, these are measures of how well the model predicts
observations that are within the sample (the observations that
were used to fit the model).

> These measures may overstate how well the model would
predict the response value of an observation that is outside
the sample.
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Measures of Out-of-Sample Predictive Accuracy

P> To assess the prediction of out-of-sample data, we use an
approach called cross-validation.

» We split the data into subsets, and we use some of the
subsets to “train” the model (i.e., estimate the parameters).

» Then we call the held-out observations the “test” data and we
use the fitted model to predict the response values of the
“test” observations.

» Since we know the actual response values of the held-out
observations, we can compare the predicted values to the
actual values to assess the predictive accuracy.

» The cross-validation MAE, scaled MAE, etc., can be
calculated for a set of models under consideration, and we
might choose the model that has a low cross-validation MAE.
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Expected Log Predictive Density (ELPD)

Another tool to compare Bayesian regression models is the
expected log-predictive density (ELPD).

If the value of the posterior predictive density at ypen is large,
this means that the new data value y,en is compatible with
the predictive model for the responses.

The ELPD is E(log f(Ynew|y)), the value of the log posterior
predictive density at ynew, averaged across all possible values
Of .ynew-

A model with a higher ELPD has greater posterior predictive
accuracy when using the model to predict new data points.
BIC is another very common tool for model selection (review
the end of the Chapter 8 notes to see the relationship between
the BIC and Bayes Factors).
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