STAT 535: Chapter 9: The Bayesian Linear Regression Model

David B. Hitchcock E-Mail: hitchcock@stat.sc.edu

Spring 2022

David B. Hitchcock E-Mail: hitchcock@stat.sc.edu Chapter 9: Bayesian Linear Regression

- We now consider the regression model in which a response variable Y is related to one or more explanatory or predictor variables X₁, X₂,..., X_{k-1}.
- For a random sample of n individuals, our model is

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \dots + \beta_{k-1} X_{i,k-1} + \epsilon_i, \ \epsilon_i \stackrel{\text{indep}}{\sim} N(0, \sigma^2)$$

Setup of Linear Regression Model

This model can be written in matrix form as

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}, \ \boldsymbol{\epsilon} \sim MVN(\mathbf{0}, \sigma^2 \boldsymbol{I}_n)$$

where

$$\boldsymbol{Y} = \begin{bmatrix} Y_1 \\ \vdots \\ Y_n \end{bmatrix}, \quad \boldsymbol{X} = \begin{bmatrix} 1 & X_{11} & \cdots & X_{1,k-1} \\ 1 & X_{21} & \cdots & X_{2,k-1} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & X_{n1} & \cdots & X_{n,k-1} \end{bmatrix},$$
$$\boldsymbol{\epsilon} = \begin{bmatrix} \epsilon_1 \\ \vdots \\ \epsilon_n \end{bmatrix}, \quad \boldsymbol{\beta} = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_{k-1} \end{bmatrix}$$

Based on this normal model, the likelihood is:

$$L(\boldsymbol{\beta}, \sigma^2 | \boldsymbol{X}, \boldsymbol{y}) = (2\pi\sigma^2)^{-\frac{n}{2}} e^{-\frac{1}{2\sigma^2} (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta})' (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta})}$$

• Note that the **least squares** estimates of β and σ^2 are:

$$\hat{\boldsymbol{b}} = (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{y}, \quad \hat{\sigma}^2 = \frac{(\boldsymbol{y} - \boldsymbol{X}\hat{\boldsymbol{b}})'(\boldsymbol{y} - \boldsymbol{X}\hat{\boldsymbol{b}})}{n-k}$$

Then
$$L(\beta, \sigma^2 | \mathbf{X}, \mathbf{y})$$

 $\propto \sigma^{-n} \exp\{-\frac{1}{2\sigma^2}(\mathbf{y}'\mathbf{y} - 2\beta'\mathbf{X}'\mathbf{y} + \beta'\mathbf{X}'\mathbf{X}\beta)\}$
 $= \sigma^{-n} \exp\{-\frac{1}{2\sigma^2}(\mathbf{y}'\mathbf{y} - 2\beta'\mathbf{X}'\mathbf{y} + \beta'\mathbf{X}'\mathbf{X}\beta)$
 $-2[(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}]'\mathbf{X}'\mathbf{y} + 2[(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}]'\mathbf{X}'\mathbf{X}[(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}])\}$
Since $\mathbf{X}'\mathbf{y} = \mathbf{X}'\mathbf{X}\hat{\mathbf{b}}$,
 $= \sigma^{-n} \exp\{-\frac{1}{2\sigma^2}(\mathbf{y}'\mathbf{y} - 2\beta'\mathbf{X}'\mathbf{X}\hat{\mathbf{b}} + \beta'\mathbf{X}'\mathbf{X}\beta)$
 $-2[(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{X}\hat{\mathbf{b}}]'\mathbf{X}'\mathbf{X}\hat{\mathbf{b}}$
 $+2[(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{X}\hat{\mathbf{b}}]'\mathbf{X}'\mathbf{X}[(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{X}\hat{\mathbf{b}}])\}$

$$= \sigma^{-n} \exp\left\{-\frac{1}{2\sigma^{2}}\left(\mathbf{y}' \mathbf{y} - 2\hat{\mathbf{b}}' \mathbf{X}' \mathbf{y} + \hat{\mathbf{b}}' \mathbf{X}' \mathbf{X} \hat{\mathbf{b}} + 2\hat{\mathbf{b}}' \mathbf{X}' \mathbf{X} \hat{\mathbf{b}} \right. \\ \left. - \hat{\mathbf{b}}' \mathbf{X}' \mathbf{X} \hat{\mathbf{b}} - 2\hat{\mathbf{b}}' \mathbf{X}' \mathbf{X} \hat{\mathbf{b}} + 2\hat{\mathbf{b}}' \mathbf{X}' \mathbf{X} \hat{\mathbf{b}} - 2\beta' \mathbf{X}' \mathbf{X} \hat{\mathbf{b}} + \beta' \mathbf{X}' \mathbf{X} \beta \right) \right\} \\ = \sigma^{-n} \exp\left\{-\frac{1}{2\sigma^{2}} [(\mathbf{y} - \mathbf{X} \hat{\mathbf{b}})' (\mathbf{y} - \mathbf{X} \hat{\mathbf{b}}) + \hat{\mathbf{b}}' \mathbf{X}' \mathbf{X} \hat{\mathbf{b}} \right. \\ \left. - 2\beta' \mathbf{X}' \mathbf{X} \hat{\mathbf{b}} + \beta' \mathbf{X}' \mathbf{X} \beta \right] \right\} \\ = \sigma^{-n} \exp\left\{-\frac{1}{2\sigma^{2}} [\hat{\sigma}^{2} (n - k) + (\beta - \hat{\mathbf{b}})' \mathbf{X}' \mathbf{X} (\beta - \hat{\mathbf{b}})] \right\}$$

Consider the independent vague priors

$$p(oldsymbol{eta}) \propto 1, \hspace{1em} oldsymbol{eta} \in (-\infty,\infty)^k$$
 and $p(\sigma^2) = rac{1}{\sigma}, \hspace{1em} \sigma \in (0,\infty)$

Then the joint posterior for $\boldsymbol{\beta}$ and σ^2 is:

$$p(\boldsymbol{\beta}, \sigma^2 | \boldsymbol{X}, \boldsymbol{y}) \propto L(\boldsymbol{\beta}, \sigma^2 | \boldsymbol{X}, \boldsymbol{y}) p(\boldsymbol{\beta}) p(\sigma^2)$$

$$\propto \sigma^{-n-1} \exp\{-\frac{1}{2\sigma^2} [\hat{\sigma}^2(n-k) + (\boldsymbol{\beta} - \boldsymbol{\hat{b}})' \boldsymbol{X}' \boldsymbol{X}(\boldsymbol{\beta} - \boldsymbol{\hat{b}})]\}$$

• Using the transformation $s = \sigma^{-2}$ with Jacobian $|J| = \frac{1}{2}s^{-3/2}$:

$$p(\boldsymbol{\beta}, \boldsymbol{s} | \boldsymbol{X}, \boldsymbol{y}) \propto (\boldsymbol{s}^{-1/2})^{-n-1} \exp\left\{-\frac{1}{2}\boldsymbol{s}[\hat{\sigma}^2(n-k) + (\boldsymbol{\beta} - \boldsymbol{\hat{b}})' \boldsymbol{X}' \boldsymbol{X}(\boldsymbol{\beta} - \boldsymbol{\hat{b}})]\right\} \left(\frac{1}{2}\boldsymbol{s}^{-3/2}\right)$$
$$\propto (\boldsymbol{s})^{\frac{n}{2}-1} \exp\left\{-\frac{1}{2}\boldsymbol{s}[\hat{\sigma}^2(n-k) + (\boldsymbol{\beta} - \boldsymbol{\hat{b}})' \boldsymbol{X}' \boldsymbol{X}(\boldsymbol{\beta} - \boldsymbol{\hat{b}})]\right\}$$

Noninformative Priors for β and σ^2

• To get the marginal posterior for β , integrate out s:

So
$$p(\boldsymbol{\beta}|\boldsymbol{X}, \boldsymbol{y})$$

$$= \int_{0}^{\infty} (s)^{\frac{n}{2}-1} \exp\{-\frac{1}{2}[\hat{\sigma}^{2}(n-k) + (\boldsymbol{\beta} - \boldsymbol{\hat{b}})'\boldsymbol{X}'\boldsymbol{X}(\boldsymbol{\beta} - \boldsymbol{\hat{b}})]s\} ds$$

$$= \frac{\Gamma(\frac{n}{2})}{\frac{1}{2}[\hat{\sigma}^{2}(n-k) + (\boldsymbol{\beta} - \boldsymbol{\hat{b}})'\boldsymbol{X}'\boldsymbol{X}(\boldsymbol{\beta} - \boldsymbol{\hat{b}})]^{\frac{n}{2}}}{\left[(n-k) + (\boldsymbol{\beta} - \boldsymbol{\hat{b}})'\hat{\sigma}^{-2}\boldsymbol{X}'\boldsymbol{X}(\boldsymbol{\beta} - \boldsymbol{\hat{b}})\right]^{-\frac{n}{2}}}$$

► This is the kernel of a multivariate t-distribution with (n − k) degrees of freedom and covariance matrix

$$\frac{(n-k)\hat{\sigma}^2(\boldsymbol{X}'\boldsymbol{X})^{-1}}{n-k-2}$$

Noninformative Priors for β and σ^2

Now we integrate β out of the joint posterior to get the marginal posterior for σ²:

$$p(\sigma^{2}|\mathbf{X},\mathbf{y}) \propto (\sigma)^{-n-1} e^{-\frac{1}{2\sigma^{2}}\hat{\sigma}^{2}(n-k)} \int_{-\infty}^{\infty} e^{-\frac{1}{2\sigma^{2}}(\mathbf{\beta}-\mathbf{\hat{b}})'\mathbf{X}'\mathbf{X}(\mathbf{\beta}-\mathbf{\hat{b}})} d\mathbf{\beta}$$
$$\propto (\sigma)^{-n-1} e^{-\frac{1}{2\sigma^{2}}\hat{\sigma}^{2}(n-k)} (2\pi\sigma^{2})^{k/2}$$
$$\propto (\sigma^{2})^{-\frac{1}{2}(n-k-1)-1} e^{-\frac{\frac{1}{2}\hat{\sigma}^{2}(n-k)}{\sigma^{2}}}$$

which is clearly an IG $(\frac{1}{2}(n-k-1), \frac{1}{2}\hat{\sigma}^2(n-k))$ posterior distribution.

Example: Oxygen update data on course web page

- If we have good prior knowledge that can help us specify priors for β and σ², we can use conjugate priors.
- Following the procedure in Christensen, Johnson, Branscum, and Hanson (2010), we will actually specify a prior for the error **precision** parameter $\tau = \frac{1}{\sigma^2}$:

 $\tau \sim \mathsf{gamma}(a, b)$

This is analogous to placing an inverse gamma prior on σ².
 Then our prior on β will depend on τ:

$$oldsymbol{eta} | au \sim MVN\Big(oldsymbol{\delta}, au^{-1} [oldsymbol{ ilde{X}}^{-1} oldsymbol{D}(oldsymbol{ ilde{X}}^{-1})']\Big)$$

(Note $\tau^{-1} = \sigma^2$)

- ▶ We will specify a set of k a priori reasonable hypothetical observations having predictor vectors x₁,..., x_k (these along with a column of 1's will form the rows of X̃) and prior expected response values y₁,..., y_k.
- Our MVN prior on β is equivalent to a MVN prior on $\tilde{X}\beta$:

$$\tilde{\boldsymbol{X}} \boldsymbol{\beta} | \tau \sim MVN(\tilde{\boldsymbol{y}}, \tau^{-1} \boldsymbol{D})$$

- Hence prior mean of $\tilde{X}\beta$ is \tilde{y} , implying that the prior mean δ of β is $\tilde{X}^{-1}\tilde{y}$.
- ► **D**⁻¹ is a diagonal matrix whose diagonal elements represent the weights of the "hypothetical" observations.
- Intuitively, the prior has the same "worth" as tr(D⁻¹) observations.

The joint density is

$$\begin{split} p(\boldsymbol{\beta}, \tau, \boldsymbol{X}, \boldsymbol{y}) &\propto \tau^{n/2} \tau^{n/2} |\boldsymbol{D}|^{-1/2} \tau^{\boldsymbol{a}-1} e^{-b\tau} \\ &\times \exp\Big\{-\frac{1}{2} (\boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{y})' (\tau^{-1}\boldsymbol{I})^{-1} (\boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{y})\Big\} \\ &\times \exp\Big\{-\frac{1}{2} (\boldsymbol{\tilde{X}}\boldsymbol{\beta} - \boldsymbol{\tilde{y}})' (\tau^{-1}\boldsymbol{D})^{-1} (\boldsymbol{\tilde{X}}\boldsymbol{\beta} - \boldsymbol{\tilde{y}})\Big\} \end{split}$$

lt can be shown that the conditional posterior for $\beta | \tau$ is:

$$oldsymbol{eta} | au, oldsymbol{X}, oldsymbol{y} \sim {\it MVN}ig(\hat{oldsymbol{eta}}, au^{-1} (oldsymbol{X}^{'}oldsymbol{X} + oldsymbol{ ilde{X}}^{'}oldsymbol{D}^{-1}oldsymbol{ ilde{X}})^{-1}ig)$$

where

$$\hat{\boldsymbol{eta}} = (\boldsymbol{X}^{'}\boldsymbol{X} + \boldsymbol{ ilde{X}}^{'}\boldsymbol{D}^{-1}\boldsymbol{ ilde{X}})^{-1}[\boldsymbol{X}^{'}\boldsymbol{y} + \boldsymbol{ ilde{X}}^{'}\boldsymbol{D}^{-1}\boldsymbol{ ilde{y}}]$$

• And the posterior for τ is:

$$au | oldsymbol{X}, oldsymbol{y} \sim \mathsf{gamma}\Big(rac{n+2a}{2}, rac{n+2a}{2} s^*\Big)$$

where

$$s^* = \frac{(\boldsymbol{y} - \boldsymbol{X}\hat{\boldsymbol{\beta}})'(\boldsymbol{y} - \boldsymbol{X}\hat{\boldsymbol{\beta}}) + (\boldsymbol{\tilde{y}} - \boldsymbol{\tilde{X}}\hat{\boldsymbol{\beta}})'\boldsymbol{D}^{-1}(\boldsymbol{\tilde{y}} - \boldsymbol{\tilde{X}}\hat{\boldsymbol{\beta}}) + 2b}{n + 2a}$$

The subjective information is incorporated via (a function of X̃ and ỹ̃) and s^{*} (a function of Â, a, and b).

- While the conditional posterior p(β|τ, X, y) is multivariate normal, the marginal posterior p(β|X, y) is a (scaled) noncentral multivariate t-distribution.
- In making inference about β, it is easier to use the conditional posterior for β|τ.
- Rather than basing inference on the posterior for β|τ̂ (by plugging in a posterior estimate of τ), it is more appropriate to sample random values τ^[1],...,τ^[J] from the posterior distribution of τ, and then randomly sample from the conditional posterior of β|τ^[j], j = 1,..., J.
- Posterior point estimates and interval estimates can then be based on those random draws.

- We will specify a matrix \tilde{X} of hypothetical predictor values.
- We also specify (via expert opinion or previous knowledge) a corresponding vector \tilde{y} of reasonable response values for such predictors.
- The number of such "hypothetical observations" we specify must be one more than the number of predictor variables in the regression.
- Our prior mean for $\boldsymbol{\beta}$ will be $\boldsymbol{\tilde{X}}^{-1}\boldsymbol{\tilde{y}}$.

Prior Specification for the Conjugate Analysis

- We also must specify the shape parameter a and the rate parameter b for the gamma prior on τ.
- One strategy is to choose a first, based on the degree on confidence in our prior.
- For a given a, we can view the prior as being "worth" the same as 2a sample observations.
- A larger value of a indicates we are more confident in our prior.

Prior Specification for the Conjugate Analysis

- Here is one strategy for specifying *b*:
- Consider any of the "hypothetical observations" take the first, for example.
- If y
 ₁ is the prior expected response for a hypothetical observation with predictors x
 ₁, then let y
 _{max} be the *a priori* maximum reasonable response for a hypothetical observation with predictors x
 ₁.
- Then (based on the normal distribution) let a prior guess for σ be ^{ỹ_{max} ỹ̃₁}/_{1.645}.
 Since τ = ¹/_{σ²}, this gives us a reasonable guess for τ.
- Set this guess for τ equal to the mean $\frac{a}{b}$ of the gamma prior for τ .
- Since we have already specified *a*, we can solve for *b*.

- Example in R with Automobile Data Set
- We can get point and interval estimates for τ (and thus for σ^2).

We can get point and interval estimates for the elements of β most easily by drawing from the posterior distributions of τ and then β|τ.

Bayesian Regression with rstanarm

- The R package rstanarm allows for estimation of Bayesian regression model via simulation of parameter values from their posterior.
- This approach allows us to avoid having to derive the posterior explicitly.
- For the normal regression model, we already derived the posterior with our approach.
- But for regression models with non-normal responses, conjugate priors for the regression coefficients will not exist. So simulating from their posterior distributions is the only workable approach.
- The rstanarm package uses rstan behind the scenes to estimate several common Bayesian regression models.

Parts of the stan_glm function call

- The R function stan_glm in the rstanarm package estimates any of several Bayesian regression models via simulation.
- For a model for a normal response, we specify method="gaussian" in the call of the stan_glm function.
- We can also provide the hyperparameters of (typically) normal priors on the intercept β₀ and the model coefficients β₁, β₂,....
- We can put another prior on the unknown standard deviation σ of the response (the book suggests using an exponential prior for σ).
- Finally, we specify the details of the MCMC like the number of iterations, and the number of chains generated (for diagnostic purposes).

- Various MCMC diagnostic functions in the rstanarm package give trace plots, autocorrelation function plots, density plots, etc., to gauge convergence of the MCMC algorithm.
- The tidy function presents a summary of the Bayesian posterior estimation of the regression coefficients.
- The posterior_predict function and the posterior_interval function give a point prediction of the response value and a posterior prediction interval of the response value, given a set of specified predictor value(s).
- We can also plot the density function of the posterior predictive model.
- See R example on the "cars" data set.

A Bayesian Approach to Model Selection

- In exploratory regression problems, we often must select which subset of our potential predictor variables produces the "best model."
- A Bayesian may consider the possible models and compare them based on their posterior probabilities.
- Note that if the value of coefficient β_j is 0, then variable X_j is not needed in the model.

• Let
$$\beta_j = z_j b_j$$
 for each j , where $z_j = 0$ or 1 and $b_j \in (-\infty, \infty)$.

Then our model is

$$Y_i = z_0 b_0 + z_1 b_1 X_{i1} + z_2 b_2 X_{i2} + \dots + z_{k-1} b_{k-1} X_{i,k-1} + \epsilon_i, \ i = 1, \dots, n$$

where any $z_j = 0$ indicates that this predictor variable does not belong in the model.

Example: Oxygen uptake example: $X_1 = \text{group}, X_2 = \text{age}, X_3 = \text{group} \times \text{age}:$ $\frac{\mathbf{z} = (z_0, z_1, z_2, z_3) | \text{True } E[Y|\mathbf{x}, \mathbf{b}, \mathbf{z}]}{(1.0.0.0) | b_0}$

A Bayesian Approach to Model Selection

- For each possible value of the vector z, we calculate the posterior probability for that model:
- For any particular z*, say:

$$p(\boldsymbol{z}^*|\boldsymbol{y},\boldsymbol{X}) = \frac{p(\boldsymbol{z}^*)p(\boldsymbol{y}|\boldsymbol{X},\boldsymbol{z}^*)}{\sum_{\boldsymbol{z}} p(\boldsymbol{z})p(\boldsymbol{y}|\boldsymbol{X},\boldsymbol{z})}$$

- This involves a prior p(·) on each possible model a noninformative approach would be to let all these prior probabilities be equal.
- If there are a large number of potential predictors, we would use a method called **Gibbs sampling** to search over the many models.

- Example in R with Oxygen Data Set
- We can consider all possible subsets of set of predictor variables:
- Result: The model with the interaction omitted has the highest posterior probability.
- We can consider only certain subsets (here, we only consider including the interaction term when both first-order terms appear):
- Result: Again, the model with the interaction omitted has the highest posterior probability (by a greater margin).

The Posterior Predictive Distribution of the Data

- Suppose we have built our Bayesian regression model using response data y and explanatory data matrix X.
- Suppose we consider future observations whose explanatory variable values are in the matrix X*.
- What is the marginal distribution of the corresponding future response values y*?
- This is the posterior predictive distribution

$$p(\mathbf{y}^*|\mathbf{y}, \mathbf{X}^*, \mathbf{X}).$$

We will use this later as a tool for checking the fit of our regression model.

The Posterior Predictive Distribution of the Data

► In our analysis with the noninformative priors, note that $p(\mathbf{y}^*, \boldsymbol{\beta}, \sigma^2 | \mathbf{y}, \mathbf{X}^*, \mathbf{X}) = p(\mathbf{y}^* | \boldsymbol{\beta}, \sigma^2, \mathbf{X}^*) p(\boldsymbol{\beta}, \sigma^2 | \mathbf{X}, \mathbf{y})$

Then integrating out β and σ², it can be shown that the posterior predictive distribution of y* is multivariate-t with (n - k) degrees of freedom so that

$$E(m{y}^*) = m{X}^* \hat{m{eta}}$$
 and
covariance matrix $= rac{(n-k)\hat{\sigma}^2}{n-k-2} [m{l} + m{X}^* (m{X}'m{X})^{-1}m{X}^{*'}]$

- Intuition: Our original data are multivariate normal, given the model.
- Our future predictions are multivariate-t (reflects added uncertainty about the model).

David B. Hitchcock E-Mail: hitchcock@stat.sc.edu Chapter 9: Bayesian Linear Regression

Example 3: In the regression setting, we have shown that the posterior predictive distribution for a new response vector y^* is multivariate-t.

- To check model fit, we can generate samples from the posterior predictive distribution (letting X* = the observed sample X) and plot the values against the y-values from the original sample.
- If an observed y_i falls far from the center of the posterior predictive distribution, this *i*-th observation is an outlier.
- If this occurs for many y-values, we would doubt the adequacy of the model.
- See R example (small automobile data set).

Posterior Prediction Intervals in Regression

- We can also make predictions and "prediction intervals" for new responses with specified predictor values.
- For example, consider a new observation with predictor variable values in the vector x^{*} = (1, x₁^{*}, x₂^{*}, ..., x_{k-1}^{*}) (or the predictor values for several new observations could be contained in the matrix X^{*}).
- ► We can generate the posterior predictive distribution with X* and compute the posterior median (for a point prediction) or posterior quantiles (for a prediction interval).
- See R example.

Posterior Prediction Using bayesrules Package

- The bayesrules package has some nice functions to do posterior predictions and diagnostics for models fit using the stan_glm function.
- The ppc_intervals function gives prediction intervals corresponding to the observations in the sample (or to hypothetical future observations).
- If we do 95% prediction intervals for observations in the sample, we could assess model fit by checking how many observed y values in the sample fall within their corresponding 95% prediction interval (hopefully around 95% of them do).

- The prediction_summary function gives several numerical measures of predictive accuracy.
- median absolute error (MAE): measures the typical difference between the observed responses and their posterior predictive means
- scaled median absolute error: measures the typical number of std deviations that the observed responses fall from their posterior predictive mean
- within_50 statistic: measures the proportion of observed response values that fall within their 50% posterior prediction interval.
- within_95 statistic: measures the proportion of observed response values that fall within their 95% posterior prediction interval.

- However, these are measures of how well the model predicts observations that are within the sample (the observations that were used to fit the model).
- These measures may overstate how well the model would predict the response value of an observation that is **outside** the sample.

Measures of Out-of-Sample Predictive Accuracy

- To assess the prediction of out-of-sample data, we use an approach called cross-validation.
- We split the data into subsets, and we use some of the subsets to "train" the model (i.e., estimate the parameters).
- Then we call the held-out observations the "test" data and we use the fitted model to predict the response values of the "test" observations.
- Since we know the actual response values of the held-out observations, we can compare the predicted values to the actual values to assess the predictive accuracy.
- The cross-validation MAE, scaled MAE, etc., can be calculated for a set of models under consideration, and we might choose the model that has a low cross-validation MAE.

Expected Log Predictive Density (ELPD)

- Another tool to compare Bayesian regression models is the expected log-predictive density (ELPD).
- If the value of the posterior predictive density at y_{new} is large, this means that the new data value y_{new} is compatible with the predictive model for the responses.
- The ELPD is E(log f(y_{new}|y)), the value of the log posterior predictive density at y_{new}, averaged across all possible values of y_{new}.
- A model with a higher ELPD has greater posterior predictive accuracy when using the model to predict new data points.
- BIC is another very common tool for model selection (review the end of the Chapter 8 notes to see the relationship between the BIC and Bayes Factors).