STAT 535: Chapter 8: Checking Model Quality and Bayesian Hypothesis Testing

David B. Hitchcock E-Mail: hitchcock@stat.sc.edu

Spring 2022

- Checking the adequacy of a Bayesian model involves:
 - 1. determining how sensitive the posterior is to the specification of the prior and the likelihood
 - 2. checking that the values we obtain in our sample fit those we would expect to see, given our posterior knowledge
 - 3. checking robustness to individual data values

- Checking the sensitivity to the specification of the data model/likelihood should be done regularly, but rarely is.
- We might examine the effect on the posterior of choosing related data models (e.g., Poisson vs. negative binomial for count data).
- Far more often, we check the sensitivity of the posterior to the prior specification.
- ▶ We might ask: What happens to the posterior when we:
 - 1. change the functional form of the prior?
 - 2. keep the same form, but change the parameter(s) of the prior?
- If the posterior is robust to such changes in the prior, we may be more comfortable with the posterior inferences we make.

Example 1(a): Consider $Y_1, \ldots, Y_n \stackrel{\text{iid}}{\sim} N(\mu, \sigma^2)$ with σ^2 known.

- The conjugate prior for μ is $\mu \sim N(\delta, \tau^2)$.
- A noninformative prior for μ is $p(\mu) = 1$.
- Another choice of prior for μ might be a t-distribution centered at δ.
- How would the posterior change for these 3 prior choices?
- We could examine (1) plots of the posterior in each case, or
 (2) several posterior quantiles in each case.

Local Sensitivity Analysis

- Unfortunately, it may be too difficult to examine a large class of prior specifications, especially when the target parameter θ is multidimensional.
- Local sensitivity analysis simply focuses on how changes in the hyperparameter value(s) affect the posterior.
- **Example 1(a)**: $Y_1, \ldots, Y_n \stackrel{\text{iid}}{\sim} N(\mu, \sigma^2)$, σ^2 known.
- Conjugate prior for μ : $\mu \sim N(\delta, \tau^2)$
- Compare resulting posterior (the plot and/or quantiles) to the posterior from these priors:

$$\begin{split} \mu &\sim \textit{N}(\delta - \tau, \tau^2) \\ \mu &\sim \textit{N}(\delta + \tau, \tau^2) \\ \mu &\sim \textit{N}(\delta, 0.5\tau^2) \\ \mu &\sim \textit{N}(\delta, 2\tau^2) \end{split}$$

See R example.

David B. Hitchcock E-Mail: hitchcock@stat.sc.edu Chapter 8: Model Adequacy and Hypothesis Testing

Local Sensitivity Analysis

- Example 1(b): Y₁,..., Y₂₀₀ are annual deaths from horse kicks for 10 Prussian cavalry corps for each of 20 years.
- Let $Y_i \stackrel{\text{iid}}{\sim} \text{Poisson}(\lambda)$, and let $\lambda \sim \text{Gamma}(\alpha, \beta)$ be the prior.

• Compare posteriors from these priors for λ :

 $\lambda \sim \text{Gamma}(2, 4)$ $\lambda \sim \text{Gamma}(4, 8)$ $\lambda \sim \text{Gamma}(1, 2)$ $\lambda \sim \text{Gamma}(0.1 \times 2, \sqrt{0.1} \times 4)$ $\lambda \sim \text{Gamma}(3 \times 2, \sqrt{3} \times 4)$

See R example with Prussian horse kick data.

General recommendation when the posterior is highly sensitive to changes in prior specification: Choose a more "objective" prior (or be prepared to defend your prior knowledge!).

- Recall that for a fixed value of θ, our data Y follow the distribution p(Y|θ).
- However, the true value of θ is uncertain, so we should average over the possible values of θ to get a better idea of the distribution of Y.
- Before taking the sample, the uncertainty in θ is represented by the prior distribution p(θ). So for some new data value y_{new}, averaging over p(θ) gives the prior predictive distribution:

$$p(y_{new}) = \int_{\Theta} p(y_{new}, \theta) \, \mathrm{d}\theta = \int_{\Theta} p(y_{new}|\theta) p(\theta) \, \mathrm{d}\theta$$

Posterior Predictive Distribution

After taking the sample, we have a better representation of the uncertainty in θ via our posterior p(θ|y). So the posterior predictive distribution for a new data point y_{new} is:

$$p(y_{new}|\mathbf{y}) = \int_{\Theta} p(y_{new}|\theta, \mathbf{y}) p(\theta|\mathbf{y}) d\theta$$
$$= \int_{\Theta} p(y_{new}|\theta) p(\theta|\mathbf{y}) d\theta$$
(since *x* is independent of the sample

(since y_{new} is independent of the sample data y)

- This reflects how we would predict new data to behave / vary.
- If the data we did observe follow this pattern closely, it indicates we have chosen our model and prior well.

Example 2 again:
$$Y_1, \ldots, Y_n \stackrel{\text{iid}}{\sim} \text{Poisson}(\lambda)$$
,
 $\lambda \sim \text{Gamma}(\alpha, \beta)$
 $\lambda | \mathbf{y} = \text{Gamma}(\sum y_i + \alpha, n + \beta)$

Posterior predictive distribution is:

$$p(y_{new}|\boldsymbol{y}) = \int_{0}^{\infty} p(y_{new}|\lambda)p(\lambda|\boldsymbol{y}) d\lambda$$
$$= \int_{0}^{\infty} \left[\frac{\lambda^{y_{new}}e^{-\lambda}}{(y_{new})!}\right] \left[\frac{(n+\beta)^{\sum y_i+\alpha}}{\Gamma(\sum y_i+\alpha)}\lambda^{\sum y_i+\alpha-1}e^{-(n+\beta)\lambda}\right] d\lambda$$

Posterior Predictive Distribution

So

$$p(y_{new}|\mathbf{y}) = \frac{(n+\beta)^{\sum y_i + \alpha}}{\Gamma(\sum y_i + \alpha)\Gamma(y_{new} + 1)} \int_0^\infty \lambda^{y_{new} + \sum y_i + \alpha - 1} e^{-(n+\beta+1)\lambda} d\lambda$$
$$= \frac{(n+\beta)^{\sum y_i + \alpha}}{\Gamma(\sum y_i + \alpha)\Gamma(y_{new} + 1)} \frac{\Gamma(y_{new} + \sum y_i + \alpha)}{(n+\beta+1)^{y_{new} + \sum y_i + \alpha}}$$
$$= \frac{\Gamma(y_{new} + \sum y_i + \alpha)}{\Gamma(\sum y_i + \alpha)\Gamma(y_{new} + 1)} \left(\frac{n+\beta}{n+\beta+1}\right)^{\sum y_i + \alpha} \left(\frac{1}{n+\beta+1}\right)^{y_{new}}$$

which is a negative binomial with mean $\frac{\sum y_i + \alpha}{n + \beta}$ and variance $\frac{\sum y_i + \alpha}{(n + \beta)^2} (n + \beta + 1)$.

- ➤ ⇒ The posterior predictive distribution has the same mean as the posterior distribution, but a greater variance (additional "sampling uncertainty" since we are drawing a new data value).
- See R example (Prussian army data).

More about Posterior Predictive Distribution

Example 1(a) again: $Y_1, \ldots, Y_n \stackrel{\text{iid}}{\sim} N(\mu, \sigma^2)$, σ^2 known.

Posterior for µ|y is normal with mean

$$\mu_{\rm post} = \frac{\delta/\tau^2 + n\bar{y}/\sigma^2}{1/\tau^2 + n/\sigma^2}$$

and variance

$$\sigma_{\rm post}^2 = \frac{\tau^2 \sigma^2}{\sigma^2 + n\tau^2}.$$

Note y_{new} |μ ~ N(μ, σ²), so the posterior predictive distribution is:

$$p(y_{new}|oldsymbol{y}) = \int\limits_{-\infty}^{\infty} p(y_{new}|\mu) p(\mu|oldsymbol{y}) \,\mathrm{d}\mu.$$

Sometimes the form of p(y_{new}|y) can be derived directly, but it is often easier to sample from p(y_{new}|y) using Monte Carlo methods:

For
$$j = 1, ..., J$$
, sample
1. $\mu^{[j]}$ from $p(\mu|\mathbf{y})$ and
2. $y^{*[j]}$ from $p(y_{new}|\mu^{[j]})$

- Then $y^{*[1]}, \ldots, y^{*[J]}$ are an iid sample from $p(y_{new}|\mathbf{y})$.
- See R example with lead data.

Hypothesis Testing

- Recall that classical hypothesis testing emphasizes the p-value: The probability (under H₀) that a test statistic would take a value as (or more) favorable to H_a as the observed value of this test statistic.
- For example, given iid data y = y₁,..., y_n from f(y|θ), where -∞ < θ < ∞, we might test H₀ : θ ≤ 0 vs. H_a : θ > 0 using some test statistic T(Y) (a function of the data).
- Then if we calculated T(y) = T* for our observed data y, the p-value would be:

$$\mathsf{p} ext{-value} = P[T(oldsymbol{Y}) \geq T^*| heta = 0] \ = \int\limits_{T^*}^{\infty} f_T(t| heta = 0) \, \mathsf{d}t$$

where $f_T(t|\theta)$ is the distribution (density) of $T(\mathbf{Y})$.

- ► This p-value is an average over *T* values (and thus sample values) that **have not occurred** and are **unlikely to occur**.
- Since the inference is based on "hypothetical" data rather than only the observed data, it violates the Likelihood Principle.
- Also, the idea of conducting many repeated tests that motivate "Type I error" and "Type II error" probabilities is not sensible in situations where our study is not repeatable.

The Bayesian Approach

- A simple approach to testing finds the posterior probabilities that θ falls in the null and alternative regions.
- We first consider one-sided tests about θ of the form:

$$H_0: \theta \leq c$$
 vs. $H_a: \theta > c$

for some constant *c*, where $-\infty < \theta < \infty$.

• We may specify prior probabilities for θ such that

$$p_0 = P[-\infty < heta \leq c] = P[heta \in \Theta_0]$$

and

$$p_1 = 1 - p_0 = P[c < \theta < \infty] = P[\theta \notin \Theta_0]$$

where Θ_0 is the set of θ -values such that H_0 is true.

▶ Then the **posterior probability** that *H*₀ is true is:

$$P[\theta \in \Theta_0 | \mathbf{y}] = \int_{-\infty}^{c} p(\theta | \mathbf{y}) \, \mathrm{d}\theta$$
$$= \frac{\int_{-\infty}^{c} p(\mathbf{y} | \theta) p_0 \, \mathrm{d}\theta}{\int_{-\infty}^{c} p(\mathbf{y} | \theta) p_0 \, \mathrm{d}\theta + \int_{c}^{\infty} p(\mathbf{y} | \theta) p_1 \, \mathrm{d}\theta}$$

by Bayes' Law (note the denominator is the marginal distribution of \mathbf{Y}).

Commonly, we might choose an uninformative prior specification in which p₀ = p₁ = 1/2, in which case P[θ ∈ Θ₀|y] simplifies to

$$\frac{\int\limits_{-\infty}^{c} p(\mathbf{y}|\theta) p_0 \, \mathrm{d}\theta}{\int\limits_{-\infty}^{\infty} p(\mathbf{y}|\theta) p_0 \, \mathrm{d}\theta} = \frac{\int\limits_{-\infty}^{c} p(\mathbf{y}|\theta) \, \mathrm{d}\theta}{\int\limits_{-\infty}^{\infty} p(\mathbf{y}|\theta) \, \mathrm{d}\theta}$$

Hypothesis Testing Example

- Example 1 (Coal mining strike data): Let Y = number of strikes in a sequence of strikes before the cessation of the series.
- Suppose we have data Y₁,..., Y₁₁ for 11 such sequences in France.
- The Poisson model would be natural, but for these data, the variance greatly exceeds the mean.

• We choose a geometric(
$$\theta$$
) model

$$f(y|\theta) = \theta(1-\theta)^y$$

where θ is the probability of cessation of the strike sequence, and y_i = number of strikes before cessation.

• We will use a prior for θ of $p(\theta) \propto \theta^{-1}(1-\theta)^{-1/2}$.

So the posterior is:

$$egin{aligned} & eta(heta|m{y}) pprox L(heta|m{y}) p(heta) \ &= heta^n (1- heta)^{\sum y_i} heta^{-1} (1- heta)^{-1/2} \ &= heta^{n-1} (1- heta)^{\sum y_i - 1/2} \end{aligned}$$

which is a beta $(n, \sum y_i + 1/2)$ distribution.

- We will test H₀: θ ≤ 0.05 vs. H_a: θ > 0.05.
 Then P[θ ≤ 0.05|**y**] = ∫₀^{0.05} p(θ|**y**) dθ, which is the area to the left of 0.05 in the beta(n, ∑y_i + 1/2) density.
- ▶ This can be found directly (or via Monte Carlo methods).
- See R example with coal mining strike data.

• Two-sided tests about θ have the form:

$$H_0: \theta = c \text{ vs. } H_a: \theta \neq c$$

for some constant c.

- We cannot test this using a continuous prior on θ, because that would result in a prior probability P[θ ∈ Θ₀] = 0 and thus a posterior probability P[θ ∈ Θ₀|y] = 0 for any data set y.
- We could place a prior probability mass on the point θ = c, but many Bayesians are uncomfortable with this since the value of this point mass is impossible to judge and is likely to greatly affect the posterior.

Two-Sided Tests

- One solution: Pick a small value ε > 0 such that if θ is within ε of c, it is considered "practically indistinguishable" from c.
- ► Then let $\Theta_0 = [c \epsilon, c + \epsilon]$ and find the posterior probability that $\theta \in \Theta_0$.
- **Example 1 again**: Testing $H_0: \theta = 0.10$ vs. $H_a: \theta \neq 0.10$. Letting $\epsilon = 0.003$, then $\Theta_0 = [0.097, 0.103]$ and

$$P[heta \in \Theta_0 | oldsymbol{y}] = \int\limits_{.097}^{.103} p(heta | oldsymbol{y}) \, \mathrm{d} heta = .033$$

from R.

Another solution (mimicking classical approach): Derive a 100(1 – α)% (two-sided) HPD credible interval for θ. Reject H₀: θ = c "at level α" if and only if c falls outside this credible interval.

- Note: Bayesian decision theory attempts to specify the cost of a wrong decision to conclude H₀ or H_a through a loss function.
- We might evaluate the Bayes risk of some decision rule, i.e., its expected loss with respect to the posterior distribution of θ.

- The Bayes Factor provides a way to formally compare two competing models, say M₁ and M₂.
- It is similar to testing a "full model" vs. "reduced model" (with, e.g., a likelihood ratio test) in classical statistics.
- However, with the Bayes Factor, one model does not have to be nested within the other.
- Given a data set y, we compare models

 $M_1: f_1(\boldsymbol{y}|\boldsymbol{\theta}_1) \text{ and } M_2: f_2(\boldsymbol{y}|\boldsymbol{\theta}_2)$

We may specify prior distributions p₁(θ₁) and p₂(θ₂) that lead to prior probabilities for each model p(M₁) and p(M₂). By Bayes' Law, the **posterior odds** in favor of Model 1 versus Model 2 is:

$$\frac{p(M_1|\mathbf{y})}{p(M_2|\mathbf{y})} = \frac{\int_{\Theta_1} \frac{p(M_1)f_1(\mathbf{y}|\theta_1)p_1(\theta_1) d\theta_1}{p(\mathbf{y})}}{\int_{\Theta_2} \frac{p(M_2)f_2(\mathbf{y}|\theta_2)p_2(\theta_2) d\theta_2}{p(\mathbf{y})}}$$
$$= \frac{p(M_1)}{p(M_2)} \cdot \frac{\int_{\Theta_1} f_1(\mathbf{y}|\theta_1)p_1(\theta_1) d\theta_1}{\int_{\Theta_2} f_2(\mathbf{y}|\theta_2)p_2(\theta_2) d\theta_2}$$
$$= [\text{prior odds}] \times [\text{Bayes Factor } B(\mathbf{y})]$$

Rearranging, the Bayes Factor is:

$$egin{aligned} \mathcal{B}(oldsymbol{y}) &= rac{p(M_1|oldsymbol{y})}{p(M_2|oldsymbol{y})} imes rac{p(M_2)}{p(M_1)} \ &= rac{p(M_1|oldsymbol{y})/p(M_2|oldsymbol{y})}{p(M_1)/p(M_2)} \end{aligned}$$

(the ratio of the posterior odds for M_1 to the prior odds for M_1).

- Note: If the prior model probabilities are equal, i.e., p(M₁) = p(M₂), then the Bayes Factor equals the posterior odds for M₁.
- ► Note: If the parameter spaces Θ₁ and Θ₂ are the same, then the Bayes Factor reduces to a likelihood ratio. Note that:

$$B(\mathbf{y}) = \frac{p(M_1|\mathbf{y})}{p(M_2|\mathbf{y})} \times \frac{p(M_2)}{p(M_1)} = \frac{\frac{p(M_1,\mathbf{y})}{p(\mathbf{y})p(M_1)}}{\frac{p(M_2,\mathbf{y})}{p(\mathbf{y})p(M_2)}} \\ = \frac{\frac{p(M_1,\mathbf{y})}{p(M_1)}}{\frac{p(M_2,\mathbf{y})}{p(M_2)}} = \frac{p(\mathbf{y}|M_1)}{p(\mathbf{y}|M_2)}$$

The Bayes Factor

- Clearly a Bayes Factor much greater than 1 supports Model 1 over Model 2.
- Jeffreys proposed the following rules, if Model 1 represents a null model:

Result Conclusion

 $B(\mathbf{y}) \geq 1 \rightarrow \text{Model 1 supported}$

 $0.316 \leq B(m{y}) < 1
ightarrow$ Minimal evidence against Model 1 (Note $0.316 = 10^{-1/2}$)

Clearly these labels are fairly arbitrary.

The Bayes Factor

► In the case when there are only two possible models, M₁ and M₂, then given the Bayes Factor B(y), we can calculate the posterior probability of Model 1 as:

$$P(M_{1}|\mathbf{y}) = 1 - P(M_{2}|\mathbf{y}) = 1 - \frac{P(\mathbf{y}|M_{2})P(M_{2})}{P(\mathbf{y})}$$
$$= 1 - \frac{P(\mathbf{y}|M_{1})}{B(\mathbf{y})}\frac{P(M_{2})}{P(\mathbf{y})}$$
$$\Rightarrow P(M_{1}|\mathbf{y}) = 1 - \left\{\frac{1}{B(\mathbf{y})}\frac{P(M_{2})}{P(M_{1})}\right\}P(M_{1}|\mathbf{y})$$
$$\Rightarrow 1 = \left[1 + \left\{\frac{1}{B(\mathbf{y})}\frac{P(M_{2})}{P(M_{1})}\right\}\right]P(M_{1}|\mathbf{y})$$
$$\Rightarrow P(M_{1}|\mathbf{y}) = \frac{1}{1 + \left\{\frac{1}{B(\mathbf{y})}\frac{P(M_{2})}{P(M_{1})}\right\}}$$

Example: Comparing Two Means

Example 2(a): Comparing Two Means (Bayes Factor Approach)

- Data: Blood pressure reduction was measured for 11 patients who took calcium supplements and for 10 patients who took a placebo.
- We model the data with normal distributions having common variance:

Calcium data :
$$Y_{1j} \stackrel{\text{iid}}{\sim} N(\mu_1, \sigma^2), \ j = 1, \dots, 11$$

Placebo data : $Y_{2j} \stackrel{\text{iid}}{\sim} N(\mu_2, \sigma^2), \ j = 1, \dots, 10$

Consider the two-sided test for whether the mean BP reduction differs for the two groups:

$$H_0: \mu_1 = \mu_2$$
 vs. $H_a: \mu_1 \neq \mu_2$

We will place a prior on the difference of standardized means

$$\Delta = \frac{\mu_1 - \mu_2}{\sigma}$$

with specified prior mean μ_{Δ} and variance σ_{Δ}^2 .

Consider the classical two-sample t-statistic

$$T = rac{ar{Y}_1 - ar{Y}_2}{\sqrt{rac{(n_1-1)s_1^2 + (n_2-1)s_2^2}{n_1 + n_2 - 2}}}/\sqrt{n^*},$$

where
$$n^* = \left(\frac{1}{n_1} + \frac{1}{n_2}\right)^{-1}$$
.

- H_0 and H_a define two specific models for the distribution of T.
- ► Under H₀, T ~ (central) t with (n₁ + n₂ 2) degrees of freedom.
- Under H_a , $T \sim$ noncentral t.
- With this prior, the Bayes Factor for H_0 over H_a is:

$$B(\mathbf{y}) = \frac{t_{n_1+n_2-2}(t^*, 0, 1)}{t_{n_1+n_2-2}(t^*, \mu_\Delta \sqrt{n^*}, 1+n^*\sigma_\Delta^2)}$$

where t^* is the observed *t*-statistic.

See R example to get $B(\mathbf{y})$ and $P[H_0|\mathbf{y}]$.

Example: Comparing Two Means

Example 2(a): Comparing Two Means (Gibbs Sampling Approach)

Same data set, but suppose our interest is in testing whether the calcium yields a **better** BP reduction than the placebo:

$$H_0: \mu_1 \leq \mu_2$$
 vs. $H_a: \mu_1 > \mu_2$

We set up the sampling model:

$$Y_{1j} = \mu + \tau + \epsilon_{1j}, j = 1, \dots, 11$$

 $Y_{2j} = \mu - \tau + \epsilon_{2j}, j = 1, \dots, 10$

where
$$\epsilon_{ij} \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$$
.
Thus $\mu_1 = \mu + \tau$ and $\mu_2 = \mu - \tau$.

We can assume independent priors for μ , τ , and σ^2 :

$$\mu \sim N(\mu_{\mu}, \sigma_{\mu}^2)$$

 $\tau \sim N(\mu_{\tau}, \sigma_{\tau}^2)$
 $\sigma^2 \sim IG(\nu_1/2, \nu_1\nu_2/2)$

Then it can be shown that the full conditional distributions are:

$$\begin{split} \boldsymbol{\mu} | \boldsymbol{y}_1, \boldsymbol{y}_2, \tau, \sigma^2 &\sim \text{Normal} \\ \tau | \boldsymbol{y}_1, \boldsymbol{y}_2, \mu, \sigma^2 &\sim \text{Normal} \\ \sigma^2 | \boldsymbol{y}_1, \boldsymbol{y}_2, \mu, \tau &\sim IG \end{split}$$

where the appropriate parameters are given in the R code.

R example: Gibbs Sampler can obtain approximate posterior distributions for μ and (especially of interest) for τ.

• Note
$$P[\mu_1 > \mu_2 | \mathbf{y}] = P[\tau > 0 | \mathbf{y}].$$

• We can also find the **posterior predictive** probability $P[Y_1 > Y_2]$.

Issues with Bayes Factors

- Note: When an improper prior (one that does not integrate to a finite number over its support) is used for θ, the Bayes Factor is not well-defined.
- Note $B(\mathbf{y}) = \frac{\text{Posterior odds for } M_1}{\text{Prior odds for } M_1}$, and the "prior odds" is meaningless for an improper prior.
- There are several methods (Local Bayes factors, Intrinsic Bayes Factors, Partial Bayes Factors, Fractional Bayes Factors), none of them ideal, to define types of Bayes Factors with improper priors.
- One criticism of Bayes Factors is the (implicit) assumption that one of the competing models (M₁ or M₂) is correct.
- Another criticism is that the Bayes Factor depends heavily on the choice of prior.

The Bayesian Information Criterion

- The Bayesian Information Criterion (BIC) can be used (as a substitute for the Bayes factor) to compare two (or more) models.
- Conveniently, the BIC does not require specifying priors.
- For parameters θ and data y:

$$BIC = -2 \ln L(\hat{\theta}|\mathbf{y}) + p \ln(n)$$

where *p* is the number of free parameters in the model, and $L(\hat{\theta}|\mathbf{y})$ is the **maximized likelihood**, given observed data \mathbf{y} . • Good models have relatively small *BIC* values:

- A small value of $-2 \ln L(\hat{\theta}|\mathbf{y})$ indicates good fit to the data;
- a small value of the "overfitting penalty" term p ln(n) indicates a simple, parsimonious model.

The Bayesian Information Criterion

• To compare two models M_1 and M_2 , we could calculate

$$S = -\frac{1}{2} [BIC_{M_1} - BIC_{M_2}]$$

= ln L($\hat{\theta}_1 | \mathbf{y}$) - ln L($\hat{\theta}_2 | \mathbf{y}$) - $\frac{1}{2} (p_1 - p_2) \ln(n)$

- A small value of S would favor M₂ here and a large S would favor M₁.
- As $n \to \infty$,

$$\frac{S - \ln(B(\boldsymbol{y}))}{\ln(B(\boldsymbol{y}))} \to 0$$

and for large n,

$$BIC_{M_1} - BIC_{M_2} = -2S \approx -2\ln(B(\mathbf{y})).$$

- Note that differences in *BIC*'s can be used to compare several nonnested models.
- They should be trusted as a substitute for Bayes Factors only when (1) no reliable prior information is available and (2) when the sample size is **quite large**.
- See R examples: (1) Calcium data example and (2) Regression example on Oxygen Uptake data set.