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Checking Model Adequacy

▶ Checking the adequacy of a Bayesian model involves:

1. determining how sensitive the posterior is to the specification
of the prior and the likelihood

2. checking that the values we obtain in our sample fit those we
would expect to see, given our posterior knowledge

3. checking robustness to individual data values
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Sensitivity Analysis

▶ Checking the sensitivity to the specification of the data
model/likelihood should be done regularly, but rarely is.

▶ We might examine the effect on the posterior of choosing
related data models (e.g., Poisson vs. negative binomial for
count data).

▶ Far more often, we check the sensitivity of the posterior to the
prior specification.

▶ We might ask: What happens to the posterior when we:

1. change the functional form of the prior?
2. keep the same form, but change the parameter(s) of the prior?

▶ If the posterior is robust to such changes in the prior, we may
be more comfortable with the posterior inferences we make.
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Sensitivity Analysis

Example 1(a): Consider Y1, . . . ,Yn
iid∼ N(µ, σ2) with σ2 known.

▶ The conjugate prior for µ is µ ∼ N(δ, τ2).

▶ A noninformative prior for µ is p(µ) = 1.

▶ Another choice of prior for µ might be a t-distribution
centered at δ.

▶ How would the posterior change for these 3 prior choices?

▶ We could examine (1) plots of the posterior in each case, or
(2) several posterior quantiles in each case.
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Local Sensitivity Analysis

▶ Unfortunately, it may be too difficult to examine a large class
of prior specifications, especially when the target parameter θ
is multidimensional.

▶ Local sensitivity analysis simply focuses on how changes in
the hyperparameter value(s) affect the posterior.

▶ Example 1(a): Y1, . . . ,Yn
iid∼ N(µ, σ2), σ2 known.

▶ Conjugate prior for µ: µ ∼ N(δ, τ2)
▶ Compare resulting posterior (the plot and/or quantiles) to the

posterior from these priors:

µ ∼ N(δ − τ, τ2)

µ ∼ N(δ + τ, τ2)

µ ∼ N(δ, 0.5τ2)

µ ∼ N(δ, 2τ2)

See R example.
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Local Sensitivity Analysis

▶ Example 1(b): Y1, . . . ,Y200 are annual deaths from horse
kicks for 10 Prussian cavalry corps for each of 20 years.

▶ Let Yi
iid∼ Poisson(λ), and let λ ∼ Gamma(α, β) be the prior.

▶ Compare posteriors from these priors for λ:

λ ∼ Gamma(2, 4)

λ ∼ Gamma(4, 8)

λ ∼ Gamma(1, 2)

λ ∼ Gamma(0.1× 2,
√
0.1× 4)

λ ∼ Gamma(3× 2,
√
3× 4)

See R example with Prussian horse kick data.
General recommendation when the posterior is highly
sensitive to changes in prior specification:Choose a more
“objective” prior (or be prepared to defend your prior knowledge!).
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Posterior Predictive Distribution

▶ Recall that for a fixed value of θ, our data Y follow the
distribution p(Y |θ).

▶ However, the true value of θ is uncertain, so we should
average over the possible values of θ to get a better idea of
the distribution of Y .

▶ Before taking the sample, the uncertainty in θ is represented
by the prior distribution p(θ). So for some new data value
ynew , averaging over p(θ) gives the prior predictive
distribution:

p(ynew ) =

∫
Θ

p(ynew , θ) dθ =

∫
Θ

p(ynew |θ)p(θ) dθ
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Posterior Predictive Distribution

▶ After taking the sample, we have a better representation of
the uncertainty in θ via our posterior p(θ|y). So the posterior
predictive distribution for a new data point ynew is:

p(ynew |y) =
∫
Θ

p(ynew |θ, y)p(θ|y) dθ

=

∫
Θ

p(ynew |θ)p(θ|y) dθ

(since ynew is independent of the sample data y)

▶ This reflects how we would predict new data to behave / vary.

▶ If the data we did observe follow this pattern closely, it
indicates we have chosen our model and prior well.
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Posterior Predictive Distribution

Example 2 again: Y1, . . . ,Yn
iid∼ Poisson(λ),

λ ∼ Gamma(α, β)

λ|y = Gamma(
∑

yi + α, n + β)

Posterior predictive distribution is:

p(ynew |y) =
∞∫
0

p(ynew |λ)p(λ|y) dλ

=

∞∫
0

[
λynew e−λ

(ynew )!

][
(n + β)

∑
yi+α

Γ(
∑

yi + α)
λ
∑

yi+α−1e−(n+β)λ

]
dλ
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Posterior Predictive Distribution

So

p(ynew |y) =
(n + β)

∑
yi+α

Γ(
∑

yi + α)Γ(ynew + 1)

∞∫
0

λynew+
∑

yi+α−1e−(n+β+1)λ dλ

=
(n + β)

∑
yi+α

Γ(
∑

yi + α)Γ(ynew + 1)

Γ(ynew +
∑

yi + α)

(n + β + 1)ynew+
∑

yi+α

=
Γ(ynew +

∑
yi + α)

Γ(
∑

yi + α)Γ(ynew + 1)

( n + β

n + β + 1

)∑
yi+α( 1

n + β + 1

)ynew

which is a negative binomial with mean
∑

yi+α
n+β and variance∑

yi+α
(n+β)2

(n + β + 1).
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Posterior Predictive Distribution

▶ ⇒ The posterior predictive distribution has the same mean as
the posterior distribution, but a greater variance (additional
“sampling uncertainty” since we are drawing a new data
value).

▶ See R example (Prussian army data).
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More about Posterior Predictive Distribution

▶ Example 1(a) again: Y1, . . . ,Yn
iid∼ N(µ, σ2), σ2 known.

▶ Posterior for µ|y is normal with mean

µpost =
δ/τ2 + nȳ/σ2

1/τ2 + n/σ2

and variance

σ2
post =

τ2σ2

σ2 + nτ2
.

▶ Note ynew |µ ∼ N(µ, σ2), so the posterior predictive
distribution is:

p(ynew |y) =
∞∫

−∞

p(ynew |µ)p(µ|y) dµ.
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More about Posterior Predictive Distribution

▶ Sometimes the form of p(ynew |y) can be derived directly, but
it is often easier to sample from p(ynew |y) using Monte Carlo
methods:

▶ For j = 1, . . . , J, sample

1. µ[ j ] from p(µ|y) and
2. y∗[ j ] from p(ynew |µ[ j ])

▶ Then y∗[1], . . . , y∗[J] are an iid sample from p(ynew |y).
▶ See R example with lead data.
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Hypothesis Testing

▶ Recall that classical hypothesis testing emphasizes the
p-value: The probability (under H0) that a test statistic
would take a value as (or more) favorable to Ha as the
observed value of this test statistic.

▶ For example, given iid data y = y1, . . . , yn from f (y |θ), where
−∞ < θ < ∞, we might test H0 : θ ≤ 0 vs. Ha : θ > 0 using
some test statistic T (Y ) (a function of the data).

▶ Then if we calculated T (y) = T ∗ for our observed data y , the
p-value would be:

p-value = P[T (Y ) ≥ T ∗|θ = 0]

=

∞∫
T∗

fT (t|θ = 0) dt

where fT (t|θ) is the distribution (density) of T (Y ).
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Issues with Classical Hypothesis Testing

▶ This p-value is an average over T values (and thus sample
values) that have not occurred and are unlikely to occur.

▶ Since the inference is based on “hypothetical” data rather
than only the observed data, it violates the Likelihood
Principle.

▶ Also, the idea of conducting many repeated tests that
motivate “Type I error” and “Type II error” probabilities is
not sensible in situations where our study is not repeatable.
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The Bayesian Approach

▶ A simple approach to testing finds the posterior probabilities
that θ falls in the null and alternative regions.

▶ We first consider one-sided tests about θ of the form:

H0 : θ ≤ c vs. Ha : θ > c

for some constant c , where −∞ < θ < ∞.

▶ We may specify prior probabilities for θ such that

p0 = P[−∞ < θ ≤ c] = P[θ ∈ Θ0]

and
p1 = 1− p0 = P[c < θ < ∞] = P[θ /∈ Θ0]

where Θ0 is the set of θ-values such that H0 is true.
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The Bayesian Approach

▶ Then the posterior probability that H0 is true is:

P[θ ∈ Θ0|y ] =
c∫

−∞

p(θ|y) dθ

=

c∫
−∞

p(y |θ)p0 dθ

c∫
−∞

p(y |θ)p0 dθ +
∞∫
c
p(y |θ)p1 dθ

by Bayes’ Law (note the denominator is the marginal
distribution of Y ).
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The Bayesian Approach

▶ Commonly, we might choose an uninformative prior
specification in which p0 = p1 = 1/2, in which case
P[θ ∈ Θ0|y ] simplifies to

c∫
−∞

p(y |θ)p0 dθ

∞∫
−∞

p(y |θ)p0 dθ
=

c∫
−∞

p(y |θ) dθ

∞∫
−∞

p(y |θ) dθ
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Hypothesis Testing Example

▶ Example 1 (Coal mining strike data): Let Y = number of
strikes in a sequence of strikes before the cessation of the
series.

▶ Suppose we have data Y1, . . . ,Y11 for 11 such sequences in
France.

▶ The Poisson model would be natural, but for these data, the
variance greatly exceeds the mean.

▶ We choose a geometric(θ) model

f (y |θ) = θ(1− θ)y

where θ is the probability of cessation of the strike sequence,
and yi= number of strikes before cessation.

▶ We will use a prior for θ of p(θ) ∝ θ−1(1− θ)−1/2.
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Hypothesis Testing Example

▶ So the posterior is:

p(θ|y) ∝ L(θ|y)p(θ)
= θn(1− θ)

∑
yi θ−1(1− θ)−1/2

= θn−1(1− θ)
∑

yi−1/2

which is a beta(n,
∑

yi + 1/2) distribution.

▶ We will test H0 : θ ≤ 0.05 vs. Ha : θ > 0.05.

▶ Then P[θ ≤ 0.05|y ] =
0.05∫
0

p(θ|y) dθ, which is the area to the

left of 0.05 in the beta(n,
∑

yi + 1/2) density.

▶ This can be found directly (or via Monte Carlo methods).

▶ See R example with coal mining strike data.
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Two-Sided Tests

▶ Two-sided tests about θ have the form:

H0 : θ = c vs. Ha : θ ̸= c

for some constant c .

▶ We cannot test this using a continuous prior on θ, because
that would result in a prior probability P[θ ∈ Θ0] = 0 and thus
a posterior probability P[θ ∈ Θ0|y ] = 0 for any data set y .

▶ We could place a prior probability mass on the point θ = c ,
but many Bayesians are uncomfortable with this since the
value of this point mass is impossible to judge and is likely to
greatly affect the posterior.
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Two-Sided Tests

▶ One solution: Pick a small value ϵ > 0 such that if θ is within
ϵ of c , it is considered “practically indistinguishable” from c .

▶ Then let Θ0 = [c − ϵ, c + ϵ] and find the posterior probability
that θ ∈ Θ0.

▶ Example 1 again: Testing H0 : θ = 0.10 vs. Ha : θ ̸= 0.10.
Letting ϵ = 0.003, then Θ0 = [0.097, 0.103] and

P[θ ∈ Θ0|y ] =
.103∫

.097

p(θ|y) dθ = .033

from R.

▶ Another solution (mimicking classical approach): Derive a
100(1− α)% (two-sided) HPD credible interval for θ. Reject
H0 : θ = c “at level α” if and only if c falls outside this
credible interval.
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Two-Sided Tests

▶ Note: Bayesian decision theory attempts to specify the cost
of a wrong decision to conclude H0 or Ha through a loss
function.

▶ We might evaluate the Bayes risk of some decision rule, i.e.,
its expected loss with respect to the posterior distribution of
θ.

David B. Hitchcock E-Mail: hitchcock@stat.sc.edu Chapter 8: Model Adequacy and Hypothesis Testing



The Bayes Factor

▶ The Bayes Factor provides a way to formally compare two
competing models, say M1 and M2.

▶ It is similar to testing a “full model” vs. “reduced model”
(with, e.g., a likelihood ratio test) in classical statistics.

▶ However, with the Bayes Factor, one model does not have
to be nested within the other.

▶ Given a data set y , we compare models

M1 : f1(y |θ1) and M2 : f2(y |θ2)

▶ We may specify prior distributions p1(θ1) and p2(θ2) that
lead to prior probabilities for each model p(M1) and p(M2).
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The Bayes Factor

By Bayes’ Law, the posterior odds in favor of Model 1 versus
Model 2 is:

p(M1|y)
p(M2|y)

=

∫
Θ1

p(M1)f1(y |θ1)p1(θ1) dθ1

p(y)∫
Θ2

p(M2)f2(y |θ2)p2(θ2) dθ2

p(y)

=
p(M1)

p(M2)
·
∫
Θ1

f1(y |θ1)p1(θ1) dθ1∫
Θ2

f2(y |θ2)p2(θ2) dθ2

= [prior odds]× [Bayes Factor B(y)]
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The Bayes Factor

Rearranging, the Bayes Factor is:

B(y) =
p(M1|y)
p(M2|y)

× p(M2)

p(M1)

=
p(M1|y)/p(M2|y)
p(M1)/p(M2)

(the ratio of the posterior odds for M1 to the prior odds for M1).
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The Bayes Factor

▶ Note: If the prior model probabilities are equal, i.e.,
p(M1) = p(M2), then the Bayes Factor equals the posterior
odds for M1.

▶ Note: If the parameter spaces Θ1 and Θ2 are the same, then
the Bayes Factor reduces to a likelihood ratio.
Note that:

B(y) =
p(M1|y)
p(M2|y)

× p(M2)

p(M1)
=

p(M1,y )
p(y )p(M1)

p(M2,y )
p(y )p(M2)

=

p(M1,y )
p(M1)

p(M2,y )
p(M2)

=
p(y |M1)

p(y |M2)

David B. Hitchcock E-Mail: hitchcock@stat.sc.edu Chapter 8: Model Adequacy and Hypothesis Testing



The Bayes Factor

▶ Clearly a Bayes Factor much greater than 1 supports Model 1
over Model 2.

▶ Jeffreys proposed the following rules, if Model 1 represents a
null model:

Result Conclusion

B(y) ≥ 1 → Model 1 supported

0.316 ≤ B(y) < 1 → Minimal evidence against Model 1

(Note 0.316 = 10−1/2)

0.1 ≤ B(y) < 0.316 → Substantial evidence against Model 1

0.01 ≤ B(y) < 0.1 → Strong evidence against Model 1

B(y) < 0.01 → Decisive evidence against Model 1

▶ Clearly these labels are fairly arbitrary.
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The Bayes Factor

▶ In the case when there are only two possible models, M1

and M2, then given the Bayes Factor B(y), we can calculate
the posterior probability of Model 1 as:

P(M1|y) = 1− P(M2|y) = 1− P(y |M2)P(M2)

P(y)

= 1− P(y |M1)

B(y)
P(M2)

P(y)

⇒ P(M1|y) = 1−
{

1

B(y)
P(M2)

P(M1)

}
P(M1|y)

⇒ 1 =

[
1 +

{
1

B(y)
P(M2)

P(M1)

}]
P(M1|y)

⇒ P(M1|y) =
1

1 +

{
1

B(y )
P(M2)
P(M1)

}
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Example: Comparing Two Means

Example 2(a): Comparing Two Means (Bayes Factor Approach)

▶ Data: Blood pressure reduction was measured for 11 patients
who took calcium supplements and for 10 patients who took a
placebo.

▶ We model the data with normal distributions having common
variance:

Calcium data : Y1j
iid∼ N(µ1, σ

2), j = 1, . . . , 11

Placebo data : Y2j
iid∼ N(µ2, σ

2), j = 1, . . . , 10

Consider the two-sided test for whether the mean BP reduction
differs for the two groups:

H0 : µ1 = µ2 vs. Ha : µ1 ̸= µ2
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Example: Comparing Two Means

▶ We will place a prior on the difference of standardized means

∆ =
µ1 − µ2

σ

with specified prior mean µ∆ and variance σ2
∆.

▶ Consider the classical two-sample t-statistic

T =
Ȳ1 − Ȳ2√

(n1−1)s21+(n2−1)s22
n1+n2−2 /

√
n∗

,

where n∗ =
(

1
n1

+ 1
n2

)−1
.
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Example: Comparing Two Means

▶ H0 and Ha define two specific models for the distribution of T .

▶ Under H0, T ∼ (central) t with (n1 + n2 − 2) degrees of
freedom.

▶ Under Ha, T ∼ noncentral t.

▶ With this prior, the Bayes Factor for H0 over Ha is:

B(y) =
tn1+n2−2(t

∗, 0, 1)

tn1+n2−2(t∗, µ∆

√
n∗, 1 + n∗σ2

∆)

where t∗ is the observed t-statistic.

▶ See R example to get B(y) and P[H0|y ].
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Example: Comparing Two Means

Example 2(a): Comparing Two Means (Gibbs Sampling
Approach)

▶ Same data set, but suppose our interest is in testing whether
the calcium yields a better BP reduction than the placebo:

H0 : µ1 ≤ µ2 vs. Ha : µ1 > µ2

▶ We set up the sampling model:

Y1j = µ+ τ + ϵ1j , j = 1, . . . , 11

Y2j = µ− τ + ϵ2j , j = 1, . . . , 10

where ϵij
iid∼ N(0, σ2).

▶ Thus µ1 = µ+ τ and µ2 = µ− τ .
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Example: Comparing Two Means

We can assume independent priors for µ, τ , and σ2:

µ ∼ N(µµ, σ
2
µ)

τ ∼ N(µτ , σ
2
τ )

σ2 ∼ IG (ν1/2, ν1ν2/2)

Then it can be shown that the full conditional distributions are:

µ|y1, y2, τ, σ
2 ∼ Normal

τ |y1, y2, µ, σ
2 ∼ Normal

σ2|y1, y2, µ, τ ∼ IG

where the appropriate parameters are given in the R code.

David B. Hitchcock E-Mail: hitchcock@stat.sc.edu Chapter 8: Model Adequacy and Hypothesis Testing



Example: Comparing Two Means

▶ R example: Gibbs Sampler can obtain approximate posterior
distributions for µ and (especially of interest) for τ .

▶ Note P[µ1 > µ2|y ] = P[τ > 0|y ].
▶ We can also find the posterior predictive probability

P[Y1 > Y2].
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Issues with Bayes Factors

▶ Note: When an improper prior (one that does not integrate
to a finite number over its support) is used for θ, the Bayes
Factor is not well-defined.

▶ Note B(y) =
Posterior odds for M1

Prior odds for M1
, and the “prior odds” is

meaningless for an improper prior.

▶ There are several methods (Local Bayes factors, Intrinsic
Bayes Factors, Partial Bayes Factors, Fractional Bayes
Factors), none of them ideal, to define types of Bayes Factors
with improper priors.

▶ One criticism of Bayes Factors is the (implicit) assumption
that one of the competing models (M1 or M2) is correct.

▶ Another criticism is that the Bayes Factor depends heavily on
the choice of prior.
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The Bayesian Information Criterion

▶ The Bayesian Information Criterion (BIC ) can be used (as a
substitute for the Bayes factor) to compare two (or more)
models.

▶ Conveniently, the BIC does not require specifying priors.

▶ For parameters θ and data y :

BIC = −2 ln L(θ̂|y) + p ln(n)

where p is the number of free parameters in the model, and
L(θ̂|y) is the maximized likelihood, given observed data y .

▶ Good models have relatively small BIC values:
▶ A small value of −2 ln L(θ̂|y) indicates good fit to the data;
▶ a small value of the “overfitting penalty” term p ln(n)

indicates a simple, parsimonious model.
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The Bayesian Information Criterion

▶ To compare two models M1 and M2, we could calculate

S = −1

2
[BICM1 − BICM2 ]

= ln L(θ̂1|y)− ln L(θ̂2|y)−
1

2
(p1 − p2) ln(n)

▶ A small value of S would favor M2 here and a large S would
favor M1.

▶ As n → ∞,
S − ln(B(y))
ln(B(y))

→ 0

and for large n,

BICM1 − BICM2 = −2S ≈ −2 ln(B(y)).
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The Bayesian Information Criterion

▶ Note that differences in BIC ’s can be used to compare several
nonnested models.

▶ They should be trusted as a substitute for Bayes Factors only
when (1) no reliable prior information is available and (2)
when the sample size is quite large.

▶ See R examples: (1) Calcium data example and (2) Regression
example on Oxygen Uptake data set.
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