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The Monte Carlo Method

▶ The Monte Carlo method involves studying a distribution
(e.g., a posterior) and its characteristics by generating many
random observations having that distribution.

▶ If θ(1), . . . , θ(S)
iid∼ p(θ|y), then the empirical distribution of

{θ(1), . . . , θ(S)} approximates the posterior, when S is large.

▶ By the law of large numbers,

1

S

S∑
s=1

g(θ(s)) → E [g(θ)|y ]

as S → ∞.
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The Monte Carlo Method

So as S → ∞:

θ̄ =
1

S

S∑
s=1

θ(s) → posterior mean

1

S − 1

S∑
s=1

(θ(s) − θ̄)2 → posterior variance

#{θ(s) ≤ c}
S

→ P[θ ≤ c |y ]

median{θ(1), . . . , θ(S)} → posterior median

(and similarly for any posterior quantile).
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The Monte Carlo Method

▶ If the posterior is a “common” distribution, as in many
conjugate analyses, we could draw samples from the posterior
using R functions.

Example 1: (General Social Survey)

▶ Sample 1: # of children for women age 40+, no bachelor’s
degree.

▶ Sample 2: # of children for women age 40+, bachelor’s
degree or higher.

▶ Assume Poisson(θ1) and Poisson(θ2) models for the data.

▶ We use gamma(2,1) priors for θ1 and for θ2.
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The Monte Carlo Method

▶ Data: n1 = 111,
∑

i yi1 = 217

▶ Data: n2 = 44,
∑

i yi2 = 66

▶ ⇒ Posterior for θ1 is gamma(219,112).

▶ ⇒ Posterior for θ2 is gamma(68, 45).

▶ Find P[θ1 > θ2|y1, y2].

▶ Find posterior distribution of the ratio θ1
θ2
.

▶ See R example using Monte Carlo method on course web page.
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Grid Approximation

▶ In many cases the posterior distribution does not have a
simple recognizable form, and so we cannot sample from it
using built-in R functions like “rgamma”

▶ We can still approximate it using simulation techniques such
as grid approximation or Markov chain Monte Carlo.

▶ We first discuss the simpler approach of grid approximation.

▶ Let’s begin with an example where we know the true
posterior: The Gamma-Poisson Model.
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Grid Approximation with the Gamma-Poisson

▶ The book gives a simple example of Poisson data with n = 2
observations: Y1 = 2 and Y2 = 8. We choose a Gamma(3, 1)
prior for our parameter of interest, λ.

▶ We know how the derive the posterior distribution analytically
in this case (Exercise: Confirm that it is a Gamma(13, 3)), but
suppose we didn’t.

▶ We could simulate a grid of values of the parameter over its
range of possible values.

▶ Since our λ follows a gamma distribution here, it could take
values between 0 and ∞, but realistically it is nearly certain to
take values between 0 and 15 (see plot of Gamma(3, 1) prior
in R).

▶ So we can generate many (say, 501) equally-spaced values of
λ between 0 and 15.

▶ We will then plug these values into our prior f (λ) and our
likelihood L(λ|y).
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General Steps for Grid Approximation

▶ If we have a prior f (θ) and a likelihood L(θ|y), here are the
steps to approximate the posterior:

1. Generate a grid of values of θ over its range of possible (or
realistic) values.

2. Plug each value from the grid into the prior f (θ) and the
likelihood L(θ|y).

3. Multiply f (θ)× L(θ|y) for each θ-value in the grid.
4. Then normalize these products so that they sum to 1 (this is

done by dividing each value by the sum of the products). The
result is an approximation of the posterior probabilities for
each θ-value in the grid.

5. Randomly sample from the grid of θ-values, selecting them
based on their normalized posterior probabilities.

▶ Luckily, this can be done easily and quickly in R.
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Grid Approximation in R with the Gamma-Poisson

▶ Recall the example of Poisson data with n = 2 observations:
Y1 = 2 and Y2 = 8. We choose a Gamma(3, 1) prior for our
parameter of interest, λ.

▶ We can generate 501 equally-spaced values of λ between 0
and 15.

▶ We plug these values into our prior f (λ) and our likelihood
L(λ|y) (easy to do in R).

▶ We find the normalized posterior probabilities and sample the
λ values according to these probabilities (again, easy to do in
R).

▶ See the R code and plots to show how close the approximated
posterior comes to the true posterior.

▶ We can use the Monte Carlo methods to get posterior
summary statistics (mean, median, variance, etc.).
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MCMC Methods

▶ Grid approximation tends to break down when the prior
and/or likelihood are especially complicated or when there are
more than one or two parameters of interest.

▶ In practical problems, Markov chain Monte Carlo (MCMC)
sampling methods are used.

▶ A Markov chain is an ordered, indexed set of random
variables (a stochastic process) in which the value of each
quantity depends probabilistically only on the previous
quantity.
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MCMC Methods

▶ Specifically, if {θ[0], θ[1], θ[2], . . .} is a Markov chain, then it
has the Markovian property:

▶ For any set A,

P{θ[t] ∈ A|θ[0], θ[1], . . . , θ[t−1]} = P{θ[t] ∈ A|θ[t−1]}

▶ So θ[t] is conditionally independent of all earlier values
except the previous one.

▶ So the values in a Markov chain are not independent, but are
“almost independent.”
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Gibbs Sampling

▶ The Gibbs Sampler is a MCMC algorithm that approximates
the joint distribution of k random quantities by sampling
from each full conditional distribution in turn.

▶ Example: We are interested in the distribution of
θ = (θ1, θ2, . . . , θk). The Gibbs algorithm is:

1. Choose initial values θ[0] = (θ
[0]
1 , θ

[0]
2 , . . . , θ

[0]
k ).

2. Cycle through each full conditional distribution, sampling, for
t = 1, 2, . . .

θ
[t]
1 ∼ p(θ1|θ[t−1]

2 , . . . , θ
[t−1]
k )

θ
[t]
2 ∼ p(θ2|θ[t]1 , θ

[t−1]
3 , . . . , θ

[t−1]
k )

...

θ
[t]
k ∼ p(θk |θ

[t]
1 , θ

[t]
2 , . . . , θ

[t]
k−1)

3. Repeat steps in (2) until convergence.
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Gibbs Sampling

▶ We must be able to sample from each of the full conditional
distributions to use the Gibbs Sampler.

▶ Note that in each step, the most recent value of each θj is
conditioned on.

▶ After many cycles, the sampled values of (θ1, . . . , θk) will
approximate random draws from the joint distribution of
(θ1, . . . , θk).

▶ Then we can summarize, say, a posterior distribution of
interest as before.
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A Simple Gibbs Example

▶ Example 2: Testing the effectiveness of a seasonal flu shot.

▶ 20 individuals are given a flu shot at the start of winter.

▶ At the end of winter, follow up to see whether they contracted
flu.
Let

Xi =

{
1 if shot effective (no flu)

0 if ineffective (contracted flu)

▶ Suppose the 20th individual was unavailable for followup.

▶ Define Y =
19∑
i=1

Xi .
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A Simple Gibbs Example

▶ If θ is the probability the shot is effective, then

p(y |θ) =
(
19

y

)
θy (1− θ)19−y

▶ If we had the complete data (for Y and X20), then

p(θ|y , x20) =
(

20

y + x20

)
θy+x20(1− θ)20−y−x20

▶ If we put in “temporary” values θ∗ and x∗20 for the unknown
quantities, then

θ|X ∗
20,Y ∼ beta(Y + X ∗

20 + 1, 20− Y − X ∗
20 + 1)

and X20|Y , θ∗ ∼ Bernoulli(θ∗)
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A Simple Gibbs Example

▶ We can repeatedly sample from these “full conditional”
distributions and eventually get a sample from the joint
distribution of (θ,X20).

▶ See R example with data.
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A More Complicated Gibbs Example (Changepoint)

Example 3: (Coal Mining Disasters)

▶ Data are yearly counts of British coal mine disasters,
1851-1962.

▶ Relatively large counts in the early era, small counts in the
later years.

▶ Question: When did the mean of the process change?

▶ We model the data using two Poisson distributions:

▶ “Early” data: Y1, . . . ,Yk |λ
iid∼ Pois(λ), i = 1, . . . , k

▶ “Later” data: Yk+1, . . . ,Yn|ϕ
iid∼ Pois(ϕ), i = k + 1, . . . , n

▶ We must estimate each Poisson mean, λ and ϕ, and also the
“changepoint” k.
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A More Complicated Gibbs Example (Changepoint)

Consider the priors:

λ ∼ gamma(α, β)

ϕ ∼ gamma(γ, δ)

k ∼ discrete uniform on{1, 2, . . . , n}

▶ If we believe the mean annual disaster count for early years is
≈ 4 and for later years is ≈ 0.5, let α = 4, β = 1, γ = 1,
δ = 2 be the hyperparameters.
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A More Complicated Gibbs Example (Changepoint)

Then the posterior is p(λ, ϕ, k |y)
∝ L(λ, ϕ, k |y)p(λ)p(ϕ)p(k)

=

[ k∏
i=1

e−λλyi

yi !

][ n∏
i=k+1

e−ϕϕyi

yi !

][
βα

Γ(α)
λα−1e−βλ

][
δγ

Γ(γ)
ϕγ−1e−δϕ

][
1

n

]

∝ e−kλλ

k∑
i=1

yi
e−(n−k)ϕϕ

n∑
k+1

yi
λα−1e−βλϕγ−1e−δϕ

= λ
α+

k∑
i=1

yi−1
e−(β+k)λϕ

γ+
n∑

k+1
yi−1

e−(δ+n−k)ϕ

So full conditionals are:

λ|ϕ, k ∼ gamma(α+
k∑

i=1

yi , β + k)

ϕ|λ, k ∼ gamma(γ +
n∑

i=k+1

yi , δ + n − k)
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A More Complicated Gibbs Example (Changepoint)

To get the full conditional for k, note the joint density of the data
is:

p(y |k , λ, ϕ) =
[ k∏
i=1

e−λλyi

yi !

][ n∏
i=k+1

e−ϕϕyi

yi !

]

=

[ n∏
i=1

1

yi !

]
ek(ϕ−λ)e−nϕλ

k∑
i=1

yi
[ n∏
i=k+1

ϕyi

][ k∏
i=1

ϕyi

ϕ
∑k

i=1 yi

]

=

[ n∏
i=1

e−ϕϕyi

yi !

][
ek(ϕ−λ)

(λ
ϕ

) k∑
i=1

yi
]

= f (y , ϕ)g(y |k)
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A More Complicated Gibbs Example (Changepoint)

By Bayes’ Law, for any particular value k∗ of k ,

p(k∗|y) = f (y , ϕ)g(y |k∗)p(k∗)
n∑

k=1

f (y , ϕ)g(y |k)p(k)

Since p(k) = 1/n (constant), we have

p(k∗|y) = p(k∗|y , λ, ϕ) ∝ g(y |k∗)
n∑

k=1

g(y |k)

(full conditional for k)

▶ This ratio defines a probability vector for k that we use at
each iteration to sample a value of k from {1, 2, . . . , n}.

▶ see R example (Coal mining data)
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Metropolis-Hastings Sampling

▶ When the full conditionals for each parameter cannot be
obtained easily, another option for sampling from the posterior
is the Metropolis-Hastings (M-H) algorithm.

▶ The M-H algorithm also produces a Markov chain whose
values approximate a sample from the posterior distribution.

▶ For this algorithm, we need the form (except for a normalizing
constant) of the posterior p(·|y) for θ, the parameter(s) of
interest.

▶ We also need a proposal (or instrumental) distribution q(·|·)
that is easy to sample from.
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Metropolis-Hastings Sampling

▶ The M-H algorithm first specifies an initial value for θ, say
θ[0]. Then:

▶ After iteration t, suppose the most recently drawn value is
θ[t].

▶ Then sample a candidate value θ∗ from the proposal density.

▶ Let the (t + 1)-st value in the chain be

θ[t+1] =

{
θ∗ with probability min{a(θ∗,θ[t]), 1}
θ[t] with probability 1−min{a(θ∗,θ[t]), 1}

where

a(θ∗,θ[t]) =
p(θ∗|y)
p(θ[t]|y)

q(θ[t]|θ∗)

q(θ∗|θ[t])

is the “acceptance ratio.”

David B. Hitchcock E-Mail: hitchcock@stat.sc.edu Chapter 6: MCMC Techniques



Metropolis-Hastings Sampling

▶ In practice we would accomplish this by sampling
U [t] ∼ U(0, 1) and choosing θ[t+1] = θ∗ if a(θ∗,θ[t]) > u[t];
otherwise choose θ[t+1] = θ[t].

▶ Note that if the proposal density q(·|·) is symmetric such that
q(θ[t]|θ∗) = q(θ∗|θ[t]), then the acceptance ratio is simply

p(θ∗|y)
p(θ[t]|y)

.
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Metropolis-Hastings Example

Example 5 (Sparrow data): We gather data on a sample of 52
sparrows:

Xi = age of sparrow (to nearest year)

Yi = Number of offspring that season

▶ We expect that the offspring number rises and then falls with
age, so we assume a quadratic trend.

▶ We model the number of offspring at a given age x as Poisson:

Y |x ∼ Pois(µx)
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Metropolis-Hastings Example

▶ Since we know µx must be positive, we use the model:

E [Y |x ] = eβ0+β1x+β2x2

▶ This Poisson regression model is a generalized linear model
(GLM).

▶ Our parameter of interest is β = (β0, β1, β2).

▶ But note that conjugate priors do not exist for non-normal
GLMs.

▶ We will use the M-H algorithm to sample from our posterior.
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Metropolis-Hastings Example

▶ Let the prior on β be multivariate normal with independent
components:

β ∼ MVN(0,Σ), where Σ = 100× I 3

▶ We will choose our proposal density to be multivariate
normal with mean vector β[t] (the current value).

▶ The covariance matrix of the proposal density is sort of a
tuning parameter. We will choose

σ̂2(X
′
X )−1 where σ̂2 = var{ln(y1 + 0.5), . . . , ln(yn + 0.5)}.

▶ We can adjust this if our acceptance rate is too high or too
low.

▶ Usually we like an acceptance rate between 20% and 50%.
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Metropolis-Hastings Example

▶ Since our proposal density is symmetric, our acceptance ratio
is simply

p(β∗|X , y)
p(β[t]|X , y)

=
L(β∗|X , y)p(β∗)

L(β[t]|X , y)p(β[t])

=

n∏
i=1

dpois(yi , exp[xT
i β

∗])
3∏

j=1
dnorm(β∗

j , 0, 10)

n∏
i=1

dpois(yi , exp[xT
i β

[t]])
3∏

j=1
dnorm(β

[t]
j , 0, 10)

where the Poisson density dpois and the normal density
dnorm can be found easily in R.

▶ See R example with real sparrow data.
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Other Metropolis-Hastings Issues

▶ In practice, it is recommended to check the acceptance rate
(the proportion of proposed β∗ values that are “accepted”).

▶ We also check the serial correlation of the
{
β
[t]
j

}
values using

a plot of the autocorrelation function.

▶ If the values do not “appear” independent, we can alleviate
this by choosing every k th value in the chain as our posterior
sample (thinning).

▶ A trace plot is a plot of the sampled parameter values over
the iterations of the algorithm. We use this to assess whether
the algorithm has “converged” and can be assumed to be
sampling from the actual posterior distribution.

▶ Ideally, we’d like to see a trace plot that looks like a “hairy
caterpillar” after a sufficient number of iterations.
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