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Why are Conjugate Priors Nice?

▶ Recall that a conjugate prior is a prior which (along with the
data model) produces a posterior distribution that has the
same functional form as the prior (but with new, updated
parameter values).

▶ In the Beta-binomial setup, the beta prior was conjugate
because the posterior was also a beta distribution.

▶ Conjugate priors are nice because

1. we can typically derive the posterior without needing any
difficult computation;

2. it is typically easy to understand the respective contributions of
the prior information and the data information to the posterior.

▶ We will now examine a couple of other Bayesian models with
conjugate priors.
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The Poisson Distribution

▶ Recall that the Poisson distribution is a common model for
count data: Data whose possible values are the nonnegative
integers 0, 1, 2, . . ..

▶ The Poisson distribution is indexed by a parameter λ > 0, and
(given λ) the pdf of a Poisson random variable Y |λ is:

f (y |λ) = λye−λ

y !

▶ If our data consists of a random sample on n such counts,
then the likelihood function is the joint density function
f (y1|λ)f (y2|λ) · · · f (yn|λ), since Y1,Y2, . . . ,Yn are
independent.
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Choice of Prior

▶ When our data model is Poisson, what is a good choice for
the prior for the parameter λ?

▶ Since λ > 0, we should use as a prior some distribution whose
support is (0,∞).

▶ The Gamma distribution is a good choice for the prior, since
its support is (0,∞).

▶ Note that the parameterization of the Gamma distribution
that we will use in this class is different from the one in the
STAT 511 course.

▶ We will consider a Gamma pdf with a shape parameter s and
a rate parameter r :

f (λ) =
r s

Γ(s)
λs−1e−rλ, λ > 0.

▶ Note that the rate parameter is the reciprocal of the scale
parameter used in the other parameterization.
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The Gamma/Poisson Bayesian Model

▶ If our data Y1, . . . ,Yn are iid Poisson(λ), then a gamma(s, r)
prior on λ is a conjugate prior.
Likelihood:

L(λ|y) =
n∏

i=1

e−λλyi

yi !
=

e−nλλ
∑

yi∏n
i=1(yi !)

Prior:

f (λ) =
r s

Γ(s)
λs−1e−rλ, λ > 0.

⇒ Posterior:

f (λ|y) ∝ λ
∑

yi+s−1e−(n+r)λ, λ > 0.

⇒ f (λ|y) is gamma
(∑

yi + s, n + r
)
. (Conjugate!)
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Properties of the Gamma (Mean)

▶ Under this shape/rate parameterization, the mean of the
Gamma(s, r) prior distribution is

E (λ) =
s

r

▶ Based on our prior beliefs, we would choose appropriate values
of the hyperparameters s and r .

▶ Similarly, the mean of the Gamma
(∑

yi + s, n + r
)
posterior

distribution is

E (λ|y) =
∑

yi + s

n + r

▶ This posterior mean could be used as a Bayesian estimator of
λ.
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Properties of the Gamma (Variance)

▶ If we have a good guess of the prior mean of λ, how can we
specifically choose which s and r to use in our prior?

▶ Under this shape/rate parameterization, the variance of the
Gamma(s, r) prior distribution is

Var(λ) =
s

r2

▶ The prior variance (and standard deviation) can guide our
choices of s and r .

▶ Plotting the potential prior using the plot gamma function in
the bayesrules package can also be helpful in choosing the
prior.
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The Posterior Mean in the Gamma/Poisson Bayesian
Model

▶ The posterior mean is:

λ̂B =

∑
yi + s

n + r

=

∑
yi

n + r
+

s

n + r

=

[
n

n + r

](∑
yi
n

)
+

[
r

n + r

](
s

r

)
▶ Again, the data get weighted more heavily as n → ∞.
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Example: Fraud Risk Phone Calls

▶ The textbook gives an example using data on fraud risk phone
calls per day, which can be modeled with a Poisson
distribution.

▶ The parameter of interest is λ, the mean number of fraud risk
calls per day.

▶ Prior belief: The mean number of such calls per day is around
5.

▶ So let’s choose s and r so that s/r = 5.

▶ Also, we believe that λ is very likely between 2 and 7.

▶ Let’s try to plot a few possible priors that have s/r = 5 (see R
examples).
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Example: Fraud Risk Phone Calls

▶ The choice of s = 10 and r = 2 seems to reflect our prior
beliefs.

▶ We collect n = 4 counts as our data, and the data were:
6, 2, 2, 1 (

∑
i yi = 11 and ȳ = 2.75).

▶ So our posterior is Gamma
(∑

yi + s, n + r
)
=

Gamma(11 + 10, 4 + 2) = Gamma(21, 6)

▶ A Bayesian estimate of λ is thus the posterior mean
21/6 = 3.5.

▶ See R plots to see how the data has updated our prior beliefs.
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Bayesian Inference: Posterior Intervals

▶ Simple values like the posterior mean E [θ|y ] and posterior
variance var [θ|y ] can be useful in learning about θ.

▶ Quantiles of p(θ|y) (especially the posterior median) can also
be a useful summary of θ.

▶ The ideal summary of θ is an interval (or region) with a
certain probability of containing θ.

▶ Note that a classical (frequentist) confidence interval does
not exactly have this interpretation.
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Bayesian Credible Intervals

▶ A credible interval (or in general, a credible set) is the
Bayesian analogue of a confidence interval.

▶ A 100(1− α)% credible set C is a subset of Θ such that∫
C
p(θ|y) dθ = 1− α.

▶ If the parameter space Θ is discrete, a sum replaces the
integral.
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Quantile-Based Intervals

▶ If θ∗L is the α/2 posterior quantile for θ, and θ∗U is the 1− α/2
posterior quantile for θ, then (θ∗L, θ

∗
U) is a 100(1− α)%

credible interval for θ.

Note: P[θ < θ∗L|y ] = α/2 and P[θ > θ∗U |y ] = α/2.

⇒ P{θ ∈ (θ∗L, θ
∗
U)|y}

= 1− P{θ /∈ (θ∗L, θ
∗
U)|y}

= 1−
(
P[θ < θ∗L|y ] + P[θ > θ∗U |y ]

)
= 1− α.
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Quantile-Based Intervals

Picture:
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Figure: Between 2.17 and 5.15 is posterior probability 0.95.
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Changing the Width of the Credible Interval

▶ The credible interval (2.17, 5.15) in the picture on the
previous slide is based on a Gamma(21, 6) posterior
distribution.

▶ The posterior probability that the true daily mean number of
fraud risk calls is between 2.17 and 5.15 is 0.95.

▶ What could we do if we desired a narrower (more precise)
credible interval?

▶ We could use, say, a 90% credible interval, with area 0.05 in
each tail.

▶ See R code for example of deriving a 90% credible interval
with this posterior distribution.

▶ The 90% credible interval is (2.35, 4.84) here. We will soon
see a different approach to getting a 90% credible interval
that is even narrower.
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Example 2: Quantile-Based Interval

▶ Consider 10 flips of a coin having P{Heads} = θ.

▶ Suppose we observe 2 “heads”.

▶ We model the count of heads as binomial:

p(y |θ) =
(
10

y

)
θy (1− θ)10−y , y = 0, 1, . . . , 10.

▶ Let’s use a uniform prior for θ:

p(θ) = 1, 0 ≤ θ ≤ 1.
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Example 2: Quantile-Based Interval

▶ Then the posterior is:

p(θ|y) ∝ p(θ)L(θ|y)

= (1)

(
10

y

)
θy (1− θ)10−y

∝ θy (1− θ)10−y , 0 ≤ θ ≤ 1.

▶ This is a beta distribution for θ with parameters
y + 1 and 10− y + 1.

▶ Since y = 2 here, p(θ|y = 2) is beta(3,9).

▶ The 0.025 and 0.975 quantiles of a beta(3,9) are (.0602,
.5178), which is a 95% credible interval for θ.
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HPD Intervals / Regions

▶ The equal-tail credible interval approach is ideal when the
posterior distribution is symmetric.

▶ But what if p(θ|y) is skewed?
Picture:
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HPD Intervals / Regions

▶ Note that values of θ around 1 have much higher posterior
probability than values around 7.5.

▶ Yet 7.5 is in the equal-tails interval and 1 is not!

▶ A better approach here is to create our interval of θ-values
having the Highest Posterior Density.
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HPD Intervals / Regions

Defn: A 100(1− α)% HPD region for θ is a subset C ∈ Θ defined
by

C = {θ : p(θ|y) ≥ k}

where k is the largest number such that∫
θ:p(θ|y )≥k

p(θ|y) dθ = 1− α.

▶ The value k can be thought of as a horizontal line placed over
the posterior density whose intersection(s) with the posterior
define regions with probability 1− α.
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HPD Intervals / Regions

Picture: (90% HPD Interval)
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⇒ P{θ∗L < θ < θ∗U} = 0.90.
The values between θ∗L = 2.25 and θ∗U = 4.72 here have the
highest posterior density.
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HPD Intervals / Regions

▶ The HPD region will be an interval when the posterior is
unimodal.

▶ If the posterior is multimodal, the HPD region might be a
discontiguous set.
Picture:
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▶ The set {θ : θ ∈ (2.85, 4.1) ∪ (6.0, 7.25)} is the HPD region
for θ here.
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Example 1 Revisited: HPD Interval

▶ See course web page for finding an HPD interval in R for λ in
the fraud risk call example.

▶ A 90% quantile-based credible interval for λ is (2.345, 4.844).

▶ Also note the hpd function in TeachingDemos package in R.

▶ See code for Example 2 (coin-flipping data) in R.
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The Normal-Normal Model

▶ Why is it so common to model data using a normal
distribution?

▶ Approximately normally distributed quantities appear often in
nature.

▶ CLT tells us any variable that is basically a sum of
independent components should be approximately normal.

▶ Note ȳ and S2 are independent when sampling from a normal
population — so if beliefs about the mean are independent of
beliefs about the variance, a normal model may be
appropriate.
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Why Normal Models?

▶ The normal model is analytically convenient (exponential
family, sufficient statistics ȳ and S2)

▶ Inference about the population mean based on a normal
model will be correct as n → ∞ even if the data are truly
non-normal.

▶ When we assume a normal likelihood, we can get a wide class
of posterior distributions by using different priors.
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A Conjugate analysis with Normal Data (variance known)

▶ Simple situation: Assume data Y1, . . . ,Yn are iid N(µ, σ2),
with µ unknown and σ2 known.

▶ We will make inference about µ.

▶ The likelihood is

L(µ|y) =
n∏

i=1

(2πσ2)−
1/2e−

1
2σ2 (Yi−µ)2

▶ The parameter of interest µ can take values from −∞ to ∞.

▶ A conjugate prior for µ is µ ∼ N(δ, τ2):

p(µ) = (2πτ2)−
1/2e−

1
2τ2

(µ−δ)2
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A Conjugate analysis with Normal Data (variance known)

So the posterior is:

p(µ|y) ∝ L(µ|y)p(µ)

∝
n∏

i=1

e−
1

2σ2 (Yi−µ)2e−
1

2τ2
(µ−δ)2

= exp

{
−1

2

[
1

σ2

n∑
i=1

(Yi − µ)2 +
1

τ2
(µ− δ)2

]}

= exp

{
−1

2

[
1

σ2

n∑
i=1

(Y 2
i − 2Yiµ+ µ2) +

1

τ2
(µ2 − 2µδ + δ2)

]}
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A Conjugate analysis with Normal Data (variance known)

So the posterior is:

p(µ|y) ∝ exp

{
−1

2

1

σ2τ2

(
τ2

∑
Y 2
i − 2τ2µnȳ + nµ2τ2

+ σ2µ2 − 2σ2µδ + σ2δ2
)}

= exp

{
−1

2

1

σ2τ2

[
µ2(σ2 + nτ2)− 2µ(δσ2 + τ2nȳ)

+
(
δ2σ2 + τ2

∑
Y 2
i

)]}
∝ exp

{
−1

2

[
µ2

( 1

τ2
+

n

σ2

)
− 2µ

( δ

τ2
+

nȳ

σ2

)
+ k

]}
(where k is some constant)
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A Conjugate analysis with Normal Data (variance known)

Hence p(µ|y) ∝ exp
{
−1

2

[( 1

τ2
+

n

σ2

)(
µ2 − 2µ

( δ
τ2

+ nȳ
σ2

1
τ2

+ n
σ2

)
+ k

)]}
∝ exp

{
−1

2

[( 1

τ2
+

n

σ2

)(
µ−

δ
τ2

+ nȳ
σ2

1
τ2

+ n
σ2

)2
]}
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A Conjugate analysis with Normal Data (variance known)

▶ Hence the posterior for µ is simply a normal distribution with
mean

δ
τ2

+ nȳ
σ2

1
τ2

+ n
σ2

and variance (
1

τ2
+

n

σ2

)−1

=
τ2σ2

σ2 + nτ2

▶ The precision is the reciprocal of the variance.

▶ Here,
1

τ2
is the prior precision . . .

▶
n

σ2
is the data precision . . .

▶ . . . and
1

τ2
+

n

σ2
is the posterior precision.
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A Conjugate analysis with Normal Data (variance known)

▶ Note the posterior mean E [µ|y ] is simply

1/τ2

1/τ2 + n/σ2
δ +

n/σ2

1/τ2 + n/σ2
ȳ ,

a combination of the prior mean and the sample mean.

▶ If the prior is highly precise, the weight is large on δ.

▶ If the data are highly precise (e.g., when n is large), the
weight is large on ȳ .

▶ Clearly as n → ∞, E [µ|y ] ≈ ȳ , and var [µ|y ] ≈ σ2

n if we
choose a large prior variance τ2.

▶ This implies that for τ2 large and n large, Bayesian and
frequentist inference about µ will be nearly identical.
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A Conjugate analysis with Normal Data (mean known)

▶ Now suppose Y1, . . . ,Yn are iid N(µ, σ2) with µ known and
σ2 unknown.

▶ We will make inference about σ2.

▶ Our likelihood

L(σ2|y) ∝ (σ2)−
n
2 e

− n
2σ2 [

1
n

n∑
i=1

(Yi−µ)2]

▶ Let W denote the sufficient statistic 1
n

∑
(Yi − µ)2.

▶ The conjugate prior for σ2 is the inverse gamma distribution.

▶ If a r.v. Y ∼ gamma, then 1/Y ∼ inverse gamma (IG).

▶ The prior for σ2 is

p(σ2) =
βα

Γ(α)
(σ2)−(α+1)e−(β/σ2) for σ2 > 0

where α > 0, β > 0.
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A Conjugate analysis with Normal Data (mean known)

▶ Note the prior mean and variance are

E (σ2) =
β

α− 1
provided that α > 1

var(σ2) =
β2

(α− 1)2(α− 2)
provided that α > 2

▶ So the posterior for σ2 is:

p(σ2|y) ∝ L(σ2|y)p(σ2)

∝ (σ2)−
n
2 e−

n
2σ2w (σ2)−(α+1)e−(β/σ2)

= (σ2)−(α+
n
2+1)e−

β+
n
2 w

σ2

▶ Hence the posterior is clearly an IG(α+ n
2 , β + n

2w)
distribution, where w = 1

n

∑
(Yi − µ)2. Conjugate!
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A Conjugate analysis with Normal Data (mean known)

▶ How to choose the prior parameters α and β?

▶ Note

α =
[E (σ2)]2

var(σ2)
+ 2 and β = E (σ2)

{
[E (σ2)]2

var(σ2)
+ 1

}
so we could make guesses about E (σ2) and var(σ2) and use
these to determine α and β.
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A Model for Normal Data (mean and variance both
unknown)

▶ When Y1, . . . ,Yn are iid N(µ, σ2) with both µ, σ2 unknown,
the conjugate prior for the mean explicitly depends on the
variance:

p(σ2) ∝ (σ2)−(α+1)e−β/σ2

p(µ|σ2) ∝ (σ2)−
1
2 e

− 1
2σ2/s0

(µ−δ)2

▶ The prior parameter s0 measures the analyst’s confidence in
the prior specification.

▶ When s0 is large, we strongly believe in our prior.
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A Model for Normal Data (mean and variance both
unknown)

The joint posterior for (µ, σ2) is:

p(µ, σ2|y) ∝ L(µ, σ2|y)p(σ2)p(µ|σ2)

∝ (σ2)−α−n
2−

3
2 e

− β
σ2−

1
2σ2

n∑
i=1

(Yi−µ)2− 1
2σ2/s0

(µ−δ)2

= (σ2)−α−n
2−

3
2 e

− β
σ2−

1
2σ2 (

∑
Y 2
i −2nȳµ+nµ2)− 1

2σ2/s0
(µ2−2µδ+δ2)

=

[
(σ2)−α−n

2−
1
2 e−

β
σ2−

1
2σ2 (

∑
Y 2
i −nȳ2)

]
×
[
(σ2)−1e−

1
2σ2 {(n+s0)µ2−2(nȳ+δs0)µ+(nȳ2+s0δ2)}

]
Note the second part is simply a normal kernel for µ.
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A Model for Normal Data (mean and variance both
unknown)

▶ To get the posterior for σ2, we integrate out µ:

p(σ2|y) =
∫ ∞

−∞
p(µ, σ2|y) dµ

∝ (σ2)−α−n
2−

1
2 e−

1
σ2 [β+

1
2(

∑
Y 2
i −nȳ2)]

since the second piece (which depends on µ) just integrates to
a normalizing constant.

▶ Hence since −α− n
2 − 1

2 = −(α+ n
2 − 1

2)− 1, we see the
posterior for σ2 is inverse gamma:

σ2|y ∼ IG
(
α+ n

2 − 1
2 , β + 1

2

∑
(Yi − ȳ)2

)
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A Model for Normal Data (mean and variance both
unknown)

▶ Note that

p(µ|σ2, y) =
p(µ, σ2|y)
p(σ2|y)

▶ After lots of cancellation,

p(µ|σ2, y) ∝ σ−2 exp{− 1
2σ2 [(n + s0)µ

2 − 2(nȳ + δs0)µ

+ (nȳ2 + s0δ
2)]}

= σ−2 exp
{
− 1

2σ2/(n+s0)

[
µ2 − 2nȳ+δs0

n+s0
µ+ nȳ2+s0δ2

n+s0

]}
▶ Clearly p(µ|σ2, y) is normal:

µ|σ2, y ∼ N

(
nȳ + δs0
n + s0

,
σ2

n + s0

)
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A Model for Normal Data (mean and variance both
unknown)

▶ Note as s0 → 0, µ|σ2, y∼̇N
(
ȳ , σ

2

n

)
.

▶ Note also the conditional posterior mean is(
n

n + s0

)
ȳ +

(
s0

n + s0

)
δ.

▶ The relative sizes of n and s0 determine the weighting of the
sample mean ȳ and the prior mean δ.
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A Model for Normal Data (mean and variance both
unknown)

The marginal posterior for µ is:

p(µ|y) =
∫ ∞

0
p(µ, σ2|y) dσ2

=

∫ ∞

0
(σ2)−α−n

2−
3
2 exp

[
−2β + (s0 + n)(µ− δ)2

2σ2

]
dσ2

Letting A = 2β + (s0 + n)(µ− δ)2, z = A
2σ2 ⇒ σ2 = A

2z and

dσ2 = − A
2z2

dz ,
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A Model for Normal Data (mean and variance both
unknown)

p(µ|y) ∝
∫ ∞

0

(
A

2z

)−α−n
2−

3
2 A

2z2
e−z dz

=

∫ ∞

0

(
A

2z

)−α−n
2−

1
2 1

z
e−z dz

∝ A−α−n
2−

1
2

∫ ∞

0
z−α−n

2−
1
2−1e−z dz

This integrand is the kernel of a gamma density and thus the
integral is a constant. So
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A Model for Normal Data (mean and variance both
unknown)

p(µ|y) ∝ A−α−n
2−

1
2

=

[
2β + (s0 + n)(µ− δ)2

]− 2α+n+1
2

∝

[
1 +

(s0 + n)(µ− δ)2

2β

]− 2α+n+1
2

which is a (scaled) noncentral t kernel having noncentrality
parameter δ and degrees of freedom n + 2α.
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Example 1: Midge Data

▶ Example 1: Y1, . . . ,Y9 are a random sample of midge wing

lengths (in mm). Assume the Y ′
i s

iid∼ N(µ, σ2).

▶ Example 1(a): If we know σ2 = 0.01, make inference about µ.
(See R example)

▶ A Bayesian point estimate for the population mean midge
wing length is the posterior mean, 1.806 mm.

▶ A 95% credible interval for µ is (1.741, 1.871), so with
posterior probability 0.95, the population mean midge wing
length is between 1.741 and 1.871 mm.
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Example 1: Midge Data

▶ Example 1(b): Make inference about µ and σ2, both
unknown (see R example).

▶ This requires choosing the hyperparameters α and β of the
inverse gamma prior on σ2.

▶ 95% credible interval for σ2: (0.012, 0.028), with posterior
median 0.0188.

▶ To approximate the posterior distribution for µ: We will
randomly generate many values from the posterior distribution
of σ2.

▶ Then we will generate many values from the posterior of µ,
given each respective generated value of σ2.

▶ 95% credible interval for µ: (1.727, 1.90), with posterior
median 1.81 mm.
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Example 2: Brain Data

▶ The textbook has an example of Bayesian inference about the
mean hippocampal volume of the brain in a population of
college football players who have a history of concussions.

▶ Example 2: Y1, . . . ,Y25 are a random sample of hippocampal
volumes (in cm3) of such football players. Assume the

Y ′
i s

iid∼ N(µ, σ2).

▶ Example 2(a): If we know σ = 0.5 ⇒ σ2 = 0.25, make
inference about µ. We assume a N(6.5, 0.42) prior on µ.

▶ The posterior mean is 5.78 cm3. With posterior probability
0.95, the mean hippocampal volume of the brains for the
population of concussed players is between 5.59 and 5.97cm3.
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