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An Illustrative Example

▶ Suppose we wish to categorize an online news item as “fake
news” or “real news”.

▶ When we encounter such an article, we can’t observe with
certainty whether it is “fake”.

▶ But we can observe some important characteristics about the
article.

▶ In addition, we may have some prior knowledge about how
often online news items are “fake news”.

▶ In the fake news data set in the bayesrules package, there
are 150 articles posted on Facebook, and experts have
identified 60 of them as “fake news” and the rest as real.

▶ Assuming this is a representative sample, this could inform our
prior knowledge about how likely an article is to be fake news.
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Using Prior and Data Information on the Example

▶ In addition, we can observe that 16 of the 60 identified fake
news items have exclamation points in the headline, and only
2 of 90 of the real news items have exclamation points in the
headline.

▶ This is a piece of information we can observe when we
encounter a new article, so we can consider it data
information since it is observable.

▶ When we encounter a news item, we could update our prior
information (about 2/5 of Facebook news items are “fake
news”) with the data information (whether or not the
encountered article has an exclamation point in the headline,
which is associated with being fake) to get a better estimated
probability that the item is fake.

▶ The prior and data information combine to yield posterior
information about the parameter of interest.
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A Formal Prior Model

▶ Let B denote the event that a random news item is fake news.

▶ Based on our prior knowledge, we can set P(B) = 0.4, which
means the probability that the item is real news is
P(Bc) = 0.6.

▶ This is a coherent prior, since the events encompass all
possible outcomes and the probabilities sum to 1.
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Incorporating the Data into the Model

▶ Now consider our observable data: Let A denote the event
that the news item’s title has an exclamation point.

▶ Based on our data, we can state that
P(A|B) ≈ 16/60 = 0.2667 and P(A|Bc) ≈ 2/90 = 0.0222.

▶ These are conditional probabilities; P(A|B) is the probability
that the item’s headline has an exclamation point given that
the item is fake news.

▶ If the conditional probability P(A|B) equals the unconditional
probability P(A), then events A and B are independent.
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The Likelihood Function

▶ If A is an observed event that is known to have occurred,
then we can use our knowledge that A occurred to determine
the likelihood that event B also occurs.

▶ We denote the likelihood with L, and in discrete/categorical
situations, L(B|A) = P(A|B), while L(Bc |A) = P(A|Bc).

▶ Note that the likelihood function is not a valid probability
function: In our example,
L(B|A) + L(Bc |A) = 0.2667 + 0.0222 = 0.2889, not 1.

▶ But the likelihood allows us to answer the question: How
compatible is the data that we observed with some
hypothetical “state of nature”?
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Joint and Marginal Probability

▶ Recall that the likelihood function is not a valid probability
function.

▶ We will see that the marginal probability, P(A), can be used
as a normalizing constant that will create a valid probability
distribution.

▶ The joint probability P(A ∩ B) is the probability of observing
both events A and B.

▶ In the news example,
P(A ∩ B) = P(A|B)P(B) = (0.2667)(0.4) = 0.1067.

▶ In addition,
P(A ∩ Bc) = P(A|Bc)P(Bc) = (0.0222)(0.6) = 0.0133.
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The Law of Total Probability

▶ The total probability that an article title has an exclamation
point is the sum of:
▶ the probability that an article is fake news and its title has an

exclamation point, and
▶ the probability that an article is real news and its title has an

exclamation point.

▶ So P(A) = P(A ∩ B) + P(A ∩ Bc) = 0.1067 + 0.0133 = 0.12.

▶ This last formula is a special case of the Law of Total
Probability (LTP).
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Bayes’ Rule and Posterior Probability

▶ What we really want to know is: Given that we observe an
article with an exclamation point in its title, what is the
probability that it is “fake news”?

▶ This is P(B|A).
▶ Recalling that L(B|A) = P(A|B) and L(Bc |A) = P(A|Bc),

Bayes’ Rule for events states:

P(B|A) = P(A ∩ B)

P(A)
=

P(B)L(B|A)
P(B)L(B|A) + P(Bc)L(Bc |A)

▶ In words, this states that the posterior =
(prior)×(likelihood)/(normalizing constant).
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Bayes’ Rule and Posterior Probability with the News
Example

▶ News example:

P(B|A) = (0.4)(0.2667)

0.12
= 0.889.

▶ Given that we observe an article with an exclamation point in
its title, the posterior probability that it is “fake news” is
0.889.

▶ Recall that before we observed the data (the exclamation
point), the prior probability that an article is “fake news”
was 0.4.

▶ Observing the data has updated our probability estimate.
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Another Bayes’ Rule Example

▶ Example: (1975 British national referendum on whether the
UK should remain part of the European Economic
Community)

▶ Suppose 52% of voters supported the Labour Party and 48%
the Conservative Party. Suppose 55% of Labour voters
wanted the UK to remain part of the EEC and 85% of
Conservative voters wanted this.

▶ What is the probability that a person voting “Yes” to
remaining in EEC is a Labour voter?

P(L|Y ) =
P(Y |L)P(L)

P(Y )
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Another Bayes’ Rule Example

Note
P(Y ) = P(Y ∩ L) + P(Y ∩ Lc) = P(Y |L)P(L) + P(Y |Lc)P(Lc).
So

P(L|Y ) =
P(Y |L)P(L)

P(Y |L)P(L) + P(Y |Lc)P(Lc)

=
(.55)(.52)

(.55)(.52) + (.85)(.48)
= 0.41.
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Bayes’ Law with Multiple Events

Let D represent some observed data and let A, B, and C be
mutually exclusive (and exhaustive) events conditional on D.
Note that

P(D) = P(A ∩D) + P(B ∩D) + P(C ∩D)

= P(D|A)P(A) + P(D|B)P(B) + P(D|C )P(C ).

By Bayes’ Rule,

P(A|D) =
P(D|A)P(A)

P(D)

⇒ P(A|D) =
P(D|A)P(A)

P(D|A)P(A) + P(D|B)P(B) + P(D|C )P(C )
.
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Bayes’ Rule with Multiple Events

▶ Denoting A, B, C by θ1, θ2, θ3, we can write this more
generally as

P(θi |D) =
P(θi )P(D|θi )∑3
j=1 P(θj)P(D|θj)

.

▶ If there are k distinct discrete outcomes θ1, . . . , θk , we have,
for any i ∈ {1, . . . , k}:

P(θi |D) =
P(θi )P(D|θi )∑k
j=1 P(θj)P(D|θj)

,

▶ The denominator equals P(D), the marginal distribution of
the data.

▶ Note if the values of θ are portions of the continuous real line,
the sum may be replaced by an integral.
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Bayes’ Rule Example (4 Classes)

Example: In the 1996 General Social Survey, for males (age 30+):

▶ 11% of those in the lowest income quartile were college
graduates.

▶ 19% of those in the second-lowest income quartile were
college graduates.

▶ 31% of those in the third-lowest income quartile were college
graduates.

▶ 53% of those in the highest income quartile were college
graduates.

What is the probability that a college graduate falls in the lowest
income quartile?
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Bayes’ Rule Example (4 Classes)

P(Q1|G ) =
P(G |Q1)P(Q1)∑4
j=1 P(G |Qj)P(Qj)

=
(.11)(.25)

(.11)(.25) + (.19)(.25) + (.31)(.25) + (.53)(.25)
= 0.09.

Exercise: Find P(Q2|G ), P(Q3|G ), P(Q4|G ) also. How does this
conditional distribution differ from the unconditional distribution
{P(Q1),P(Q2),P(Q3),P(Q4)}?
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Statistics Using Bayes’ Rule

▶ We now consider inference about parameters, based on data.

▶ Generically denote an unobserved parameter of interest as θ.

▶ Generically denote our data as D.

▶ Our probability model for the data, given a value of θ, is
denoted p(D|θ).

▶ Our model for our prior knowledge about θ is denoted p(θ).

▶ This could be highly specific or quite vague, depending how
uncertain we are about θ.
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Statistics Using Bayes’ Rule

▶ We seek to make probability statements about θ, given some
observed data: p(θ|D).

▶ By Bayes’ Rule,

p(θ|D) =
p(θ)p(D|θ)

p(D)
.

▶ Note p(D) does not depend on θ and thus carries no
information about θ.

▶ It is simply a normalizing constant which makes p(θ|D) sum
(or integrate) to 1.
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Statistics Using Bayes’ Rule

▶ For inference about θ, it is just as good to write

p(θ|D) ∝ p(θ)p(D|θ)

▶ The LHS is called the posterior distribution of θ and
represents a compromise between the prior information about
θ in p(θ) and the information from the sample about θ in
p(D|θ).

▶ Some useful summaries of the posterior are the posterior
mean

E [θ|D] =

∫
θp(θ|D) dθ
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Statistics Using Bayes’ Rule

and the posterior variance

var [θ|D] = E

{
(θ − E [θ|D])2|D

}
=

∫
(θ − E [θ|D])2p(θ|D) dθ

=

∫
θ2p(θ|D) dθ − 2E [θ|D]

∫
θp(θ|D) dθ

+

(
E [θ|D]

)2 ∫
p(θ|D) dθ

= E [θ2|D]−
(
E [θ|D]

)2

▶ If the values of θ are discrete, sums would replace the
integrals.
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An Example: A Binomial Probability

▶ In 1997, World Chess Champion Garry Kasparov faced chess
computer Deep Blue in a 6-game contest.

▶ Let π represent the unknown probability of Kasparov winning
any particular game, and assume the number of game wins
Kasparov obtains in the 6 games is a Binomial(6, π) random
variable.

▶ The Bayes Rules! book gives an analysis of this setup which is
interesting but rather artificial: It assumes a prior distribution
that puts positive probability on only three specific values of
π, as if these three were the only possible values of π.

▶ A more realistic analysis would spread the prior probability
distribution for π over the whole interval from 0 to 1.

▶ We will explore such models in the next chapter.
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