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Regression for Count Data

▶ We now consider the regression model in which a response
variable Y takes on count values, such as 0, 1, 2, 3, . . .

▶ If the count values in the data set tend to be quite large, we
might reasonably assume the response (given values of the
predictors) to be approximately normal and use the methods
of Chapter 9 for Normal-response models.

▶ However, if the sizes of the counts Y1,Y2, . . . ,Yn in our data
set are small to moderate, then it doesn’t make sense to treat
the responses as normal (they would be highly discrete and
quite possibly skewed).
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A Better Regression Model for Count Responses

▶ A natural regression model for count-valued responses is the
Poisson regression model, which assumes

Yi |λi
ind∼ Pois (λi )

and models the conditional mean of the i-th individual as

E (Yi |λi ) = λi
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Setup of Poisson Regression Model

▶ Note the the Poisson mean must be greater than 0.

▶ So to force E (Yi |λi ) = λi to be positive, we actually relate
log(λi ) to the predictor variables:

log(λi ) = β0 + β1Xi1 + β2Xi2 + · · ·+ βk−1Xi ,k−1

▶ So the model for the mean response given the predictors is

E (Yi |x) = exp(β0 + β1Xi1 + β2Xi2 + · · ·+ βk−1Xi ,k−1)

▶ We saw this model in Chapter 6 with the sparrow offspring
data.
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Example of Poisson Regression Model

▶ Consider a data set in which the individuals are high school
students (taken from the UCLA Advanced Research and
Computing website).

▶ The response variable is the number of awards the student
won for academic performance.

▶ This response takes values 0, 1, 2, 3 . . . (most values in the
data set are relatively small).

▶ One predictor variable (X1) is the student’s score on a math
exam.
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Example of Poisson Regression Model

▶ We also have a categorical predictor with three categories,
which track the student is on, which could be “General”,
“Academic”, or “Vocational”.

▶ We code this using two dummy variables:

X2 =

{
1 if student is on academic track

0 otherwise

X3 =

{
1 if student is on vocational track

0 otherwise

▶ The “general” category is the baseline category, and the
coefficients of the two dummy variables are interpreted
relative to this category.
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Equation for this Poisson Regression Model

▶ The model equation for this is:

E (Yi |x) = exp(β0 + β1Xi1 + β2Xi2 + β3Xi3)

▶ So the equation for the expected counts is a nonlinear
function of the predictors (different from the normal
regression model).

▶ Note that with Poisson data, the variance of the response
equals the mean of the response.

▶ So as the mean response increases, the variability of the
responses around the regression curve should increase as the
predicted counts get larger (also different from the normal
regression model where constant variance of Y |x is one of
the key assumptions).
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Priors in the Poisson Regression Model

▶ With regression models in which the response is non-normal,
we generally do not have conjugate priors for the regression
coefficients (the β’s).

▶ We can still specify independent normal priors on each
βj , j = 0, 1, 2, . . . , k − 1, as we did in the sparrow data
example.

▶ If we have a prior belief about the direction of the coefficient,
we could set the prior mean to be positive or negative
(otherwise we could set it to 0).

▶ A large prior variance would indicate less certainty about our
prior knowledge.
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Fitting the Poisson Regression Model

▶ Since do not use conjugate priors for the β’s, we sample from
the posterior using MCMC methods, specifically the
Metropolis-Hastings method.

▶ We could code this using R as we did for the sparrow data, or
we use use the stan glm function in the rstanarm package

to do the Metropolis-Hastings automatically.

▶ We would still want to do our usual MCMC diagnostics and
(if necessary) remedial actions.

▶ See R examples for the fitting of the model.
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Interpretations of Estimated Parameters

▶ The posterior estimate of β1 is (around) 0.07 (it will change
slightly depending on the exact type of priors chosen and even
slightly based on the MCMC run).

▶ For a fixed level of track, the expected number of awards
earned increased by a factor of e0.07 = 1.07 for each one-point
increase in math test score.

▶ The posterior estimate of β2 is (around) 1.03 (it will change
slightly depending on the exact type of priors chosen and even
slightly based on the MCMC run).

▶ The expected number of awards earned for a student on the
academic track is e1.03 = 2.8 times the expected number of
awards earned for a student on the general track (given the
same level of math test score).
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Checking Model Fit

▶ We can again check model fit using tools like the Mean
Absolute Error (MAE).

▶ The bayesrules package offers nice built-in functions to
calculate the MAE (and other measures of goodness-of-fit) for
both the in-sample prediction performance and the
out-of-sample (cross-validation) prediction performance.

▶ The model fit measures show a good fit of the Poisson model
for the awards data.

▶ Often it is most useful to fit multiple models (i.e., with
different sets of predictor variables) and to compare the
models using the model-fit criteria.
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Count Regression for Overdispersed Data

▶ Sometimes we have data is which the response variable is a
count, but the Poisson regression model does not provide a
good fit.

▶ Example: The pulse data frame in the bayesrules package
has numerous variables measured on over 900 individuals (we
will focus on three variables here):

▶ Y : number of books read in past year

▶ X1: age in years

▶ X2: Categorical: X2 = 1 if person would rather be “wise but
unhappy”, X2 = 0 if person would rather be “happy but
unwise”
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Problems with Poisson Regression with Overdispersed Data

▶ We might initially try a Poisson regression of Y on X1 and X2.

▶ We can fit this, but the posterior predictive analysis shows
that the model is a poor fit (the posterior predictive
distribution does not match the actual data at all).

▶ Some summary calculations show that the variance is much
greater than the mean for this data set.

▶ The Poisson regression model assumes that given a set of
predictor values, the true mean of Y should equal the variance
of Y .

▶ For the “books” data, we see that within subsets of the data
having similar predictor values, the variance greatly exceeds
the mean.
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Overdispersion in Data

▶ When the variance of a count variable exceeds the mean, we
(loosely) say there is overdispersion.

▶ The book gives a general definition pertaining to lack of
model fit: A random variable Y is overdispersed if the
observed variability in Y exceeds the variability expected by
the assumed probability model of Y .
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Using the Negative Binomial to Account for Overdispersion

▶ The Negative Binomial probability model is a common
alternative to the Poisson when Y is overdispersed.

▶ The Negative Binomial distribution is also a good model for
count data, since its support is y = 0, 1, 2, . . ., but it does not
assume E (Y ) = var(Y ).

▶ In fact, for the negative binomial, E (Y ) < var(Y ).
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Form of the Negative Binomial Probability Function

▶ The probability function for the negative binomial has a
couple of different parametrizations. One version with a
parameter µ for the mean and another parameter r that is the
“reciprocal dispersion” is:

f (y |µ, r) =
(

y + r − 1
r

)(
r

µ+ r

)r ( µ

µ+ r

)y

for y = 0, 1, 2, . . .

▶ Here,

E (Y |µ, r) = µ and Var(Y |µ, r) = µ+
µ2

r
.

▶ So for r large, E (Y ) ≈ var(Y ), but for r small, var(Y ) is
allowed to be much larger than E (Y ).
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Fitting a Negative Binomial Regression Model

▶ The negative binomial regression model can be fit most easily
using the stan glm function in the rstanarm package, by
specifying family=neg binomial 2

▶ As with the Poisson regression, we model

E (Yi |x) = exp(β0 + β1Xi1 + β2Xi2)

so that the expected counts produced by the model will be
nonnegative.

▶ We set up the priors similarly as in the Poisson regression
example.

▶ The plots and numerical statistics to check model fit can be
obtained similarly to how they were with Poisson regression.

▶ Posterior predictions of the response variable for one or more
individuals can also be obtained.
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Substantive Conclusions with the pulse Regression
Analysis

▶ See the R examples for the Negative Binomial regression
analysis of the “books” data set.

▶ Again, the exact values of the estimated β’s will vary based
on the MCMC run.

▶ Age may not be an important predictor of number of books
read.

▶ The estimated coefficient of wise unwise is around 0.265, so
the expected number of books read is 1.3 times more for
people who prefer to be wise but unhappy than for people
who prefer to be happy but unwise (holding age constant),
since e0.265 = 1.3.

▶ The 95% credible interval for β2 is completely above 0, so it is
highly likely that preference for wisdom over happiness is
positively associated with number of books read.
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A Quick Model Comparison

▶ We might consider a couple of other models: Maybe a model
without age as a predictor, or maybe a model with age,
“wise unwise”, and their interaction.

▶ The loo function will calculate the ELPD criterion for each
model.

▶ The code on the course website shows that the model with
both predictors and their interaction has the highest ELPD
and could be considered the best of these three models
(although the ELPD values are very close).
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