Chapter 6 Continued: Partitioning Methods

- *Partitioning methods* fix the number of clusters *k* and seek the best possible partition for that *k*.
- The goal is to choose the partition which gives the optimal value for some *clustering criterion*, or objective function.
- In reality, we cannot search all possible partitions to try to optimize the clustering criterion, but the algorithms are designed to search intelligently among the partitions.
- For a fixed k, partitioning methods are able to investigate far more possible partitions than a hierarchical method is.
- In practice, it is recommended to run a partitioning method for several choices of k and examine the resulting clusterings.

K-means Clustering

- The goal of *K*-means, the most well-known partitioning method, is to find the partition of *n* objects into *k* clusters that minimizes a *within-cluster sum of squares* criterion.
- In the traditional *K*-means approach, "closeness" to the cluster centers is defined in terms of squared Euclidean distance, defined by:

$$d_E^2(\mathbf{x}, \bar{\boldsymbol{x}}_c) = (\mathbf{x} - \bar{\boldsymbol{x}}_c)'(\mathbf{x} - \bar{\boldsymbol{x}}_c) = \sum_m (x_{im} - \bar{x}_{cm})^2,$$

where $\mathbf{x} = (x_1, \dots, x_q)'$ is any particular observation and $\bar{\boldsymbol{x}}_c$ is the centroid (multivariate mean vector) for, say, cluster c.

K-means Clustering (Continued)

• The goal is to minimize the sum (over all objects within all clusters) of these squared Euclidean distances:

$$WSS = \sum_{c=1}^{k} \sum_{i \in c} d_E^2(\mathbf{x}_i, \bar{\boldsymbol{x}}_c)$$

- In practice, *K*-means will not generally achieve the global minimum of this criterion over the whole space of partitions.
- In fact, only under certain conditions will it achieve the local minimum (Selim and Ismail, 1984).

The K-means Algorithm

- The K-means algorithm (MacQueen, 1967) begins by randomly allocating the n objects into k clusters (or randomly specifying k centroids).
- One at a time, the algorithm moves each object to the cluster whose centroid is closest to it, using the measure of closeness $d_E^2(\mathbf{x}, \bar{\boldsymbol{x}}_c)$.
- When an object is moved, the centroids are immediately recalculated for the cluster gaining the object and the cluster losing it.
- The method repeatedly cycles though the objects until no reassignments of objects take place.
- The final clustering result will somewhat depend on the initial configuration of the objects.
- In practice, it is good to rerun the algorithm a few times (with different starting points) to make sure the result is stable.
- The R function kmeans performs K-means clustering.

Ward's Method

- The method of Ward (1963) is a hybrid of hierarchical clustering and K-means.
- It begins with n clusters and joins clusters together, one step at a time.
- At each step, the method searches over all possible ways to join a pair of clusters so that the K-means criterion WSS is minimized for that step.
- It begins with each object as its own cluster (so that WSS = 0) and concludes with all objects in one cluster.
- The R function hclust performs Ward's method if the option method = 'ward' is specified.

K-medoids Clustering

- The K-medoids algorithm (Kaufman and Rousseeuw, 1987) is a robust alternative K-means.
- It attempts to minimize the criterion

$$Crit_{Med} = \sum_{c=1}^{k} \sum_{i \in c} d(\mathbf{x}_i, \mathbf{m}_c)$$

where m_c is a *medoid*, or "most representative object," for cluster *c*.

- The algorithm begins (in the "build step") by selecting k such representative objects.
- It proceeds by assigning each object to the cluster with the closest medoid.
- Then (in the "swap step"), if swapping any non-medoid object with a medoid results in a decrease in the criterion $Crit_{Med}$, the swap is made.
- The algorithm stops when no swap can decrease $Crit_{Med}$.

K-medoids Clustering (Continued)

- Like *K*-means, the *K*-medoids algorithm does not globally minimize its criterion in general.
- The R function pam in the cluster package performs *K*-medoids clustering.
- An advantage of *K*-medoids is that (unlike kmeans) the function can accept a dissimilarity matrix, as well as a raw data matrix.
- This is because the criterion to be minimized is a direct sum of pairwise dissimilarities between objects.
- The pam function also produces tools called the *silhouette plot* and *average silhouette width* to guide the choice of k (see examples).

Specialized Partitioning Methods

- The K-medoids algorithm is computationally infeasible for very large n (n > 5000 or so).
- The R function clara (Clustering Large Applications) is designed as a largesample version of pam.
- With clara, the medoids are calculated using randomly selected subsets of the data.
- The build-step and swap-step are carried out on the subsets rather than the entire data set.
- Fuzzy Cluster Analysis (implemented by fanny in R) assumes each object can have partial membership in several clusters.
- Rather than assigning each object to only one cluster, it assigns a "membership coefficient" for each cluster to an object that reflects the "degree of membership" of the object to that cluster.

Objective Methods to Determine the Number of Clusters k

- At some point we need to choose a single value of k to get a clustering solution.
- A variety of criteria have been proposed to pick the best value of k.
- The *average silhouette width* is based on the difference between the average dissimilarity of objects to other objects in their own cluster and the average dissimilarity of objects to the objects in a "neighbor cluster."
- The larger the average silhouette width, the better the clustering of the objects.
- We could calculate the average silhouette width for clusterings based on several values of k and choose the k with the largest average silhouette width.
- The *silhouette* function in the *cluster* package of R gives the average silhouette width for any clustering result and distance matrix.

Other Methods to Determine the Number of Clusters

- Another criterion for choosing k is the *Dunn index*, which is implemented with the dunn function in the clValid package.
- Especially with K-means clustering, a common way to choose k is to plot the withincluster sum-of-squares WSS for the K-means partitions for a variety of choices of k.
- \bullet As k increases, the corresponding WSS will decrease, and at some point will level off.
- The "best" choice of k usually occurs near the "elbow" in this plot.

Model-based Clustering

- Neither hierarchical nor partitioning methods assume a specific statistical model for the data.
- They are strictly exploratory tools, and no formal inference about a wider population is possible.
- *Model-based clustering* assumes that the population generating the data consists of k subpopulations, which correspond to the k clusters we seek.
- Therefore, the distribution for the data is assumed to be composed of k densities.
- This idea was originally proposed by Scott and Symons (1971) but fully developed in recent years by Banfield and Raftery (1993) and Fraley and Raftery (2002).

Clustering Model Setup

- Let $\gamma = [\gamma_1, \dots, \gamma_n]'$ be a vector of cluster labels, such that $\gamma_i = j$ if observation \mathbf{x}_i is from the *j*-th subpopulation.
- Suppose the subpopulation densities are denoted by $f_j(\mathbf{x}; \boldsymbol{\theta}_j)$, where $\boldsymbol{\theta}_j$ contains the set of unknown parameters for the *j*-th density.
- Then the likelihood, given the observed data, is:

$$L(\boldsymbol{\theta}_1,\ldots,\boldsymbol{\theta}_k,\boldsymbol{\gamma}|\mathbf{x}_1,\ldots,\mathbf{x}_n) = \prod_{i=1}^n f_{\gamma_i}(\mathbf{x}_i;\boldsymbol{\theta}_{\gamma_i}).$$

- Fitting the model amounts to choosing $\theta_1, \ldots, \theta_k, \gamma$ to maximize this likelihood.
- The estimated γ is the "clustering vector" that defines which cluster each object is assigned to.

The Multivariate Normality Assumption

- We may assume that each subpopulation (j = 1, ..., k) follows a multivariate normal density having mean vectors μ_j and covariance matrices Σ_j , for j = 1, ..., k, as its parameters.
- Then the likelihood becomes

$$L(\boldsymbol{\theta}_1,\ldots,\boldsymbol{\theta}_k,\boldsymbol{\gamma}) \propto \prod_{j=1}^k \prod_{i\in f_j} |\boldsymbol{\Sigma}_j|^{1/2} \exp\left[-\frac{1}{2}(\mathbf{x}_i-\boldsymbol{\mu}_j)' \boldsymbol{\Sigma}_j^{-1}(\mathbf{x}_i-\boldsymbol{\mu}_j)
ight].$$

• The MLE of μ_j is \bar{x}_j , the sample mean vector for the observations in subpopulation j.

The Multivariate Normality Assumption (continued)

• Replacing $oldsymbol{\mu}_{j}$ with $ar{oldsymbol{x}}_{j}$, the log-likelihood function is a constant plus

$$-\frac{1}{2}\sum_{j=1}^{k} trace(\mathbf{W}_{j}\boldsymbol{\Sigma}_{j}^{-1} + n\ln|\boldsymbol{\Sigma}_{j}|),$$

where \mathbf{W}_{j} is a matrix containing the sums of squares and cross products of variables for observations in subpopulation j.

• We can assume a certain structure for the covariance matrices Σ_j (j = 1, ..., k)and then determine computationally the value of γ that maximizes this (log) likelihood.

Possible Covariance Structures

- We could consider a few possible covariance structures.
- A simple (maybe unrealistic!) assumption is that each subpopulation has the same covariance structure *and* that all the $\Sigma_j = \sigma^2 \mathbf{I}$.
- In this case, γ is chosen so that the total within-group sum-of-squares $trace(\sum_{j=1}^{k} \mathbf{W}_{j})$ is minimized.
- This tends to produce clusters that are spherical and roughly of equal size.
- A slightly more complicated assumption is that each subpopulation has the same covariance structure, i.e., $\Sigma_j = \Sigma$ for all j = 1, ..., k.
- This tends to produce clusters that are elliptical with roughly the same directional slope.

Other Covariance Structures

- An extremely unrestrictive assumption is that each subpopulation may have a completely different covariance structure, $\Sigma_j, j = 1, \dots, k$.
- This may produce clusters that are different in size, shape, and orientation.
- We might consider assumptions that are less restrictive than the equal-covariances assumption yet more parsimonious than the unstructured-covariances assumption.
- The covariance structure we assume leads to a clustering solution in which the sizes, shapes, and orientations of the clusters might be the same or different.
- In practice, the R function Mclust in the mclust package considers many such models, letting the covariance assumptions *and* the number of clusters *k* vary.
- Usually the *Bayesian information Criterion* (BIC) is used to choose the best of all these competing models and thus determine the model-based clustering result.

Clustering Binary Data

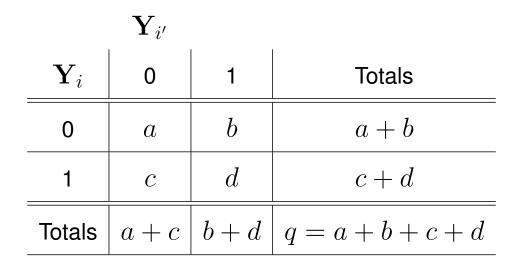
- When the *q* variables measured on each observation are *binary* (e.g., representing the presence or absence of some characteristic), the objects may still be clustered based on a distance measure.
- Suppose, for each individual (i = 1, ..., n), we let the binary variable X_{ij} (for j = 1, ..., q) take the value 0 or 1.
- Then two individuals have a "match" on a binary variable if both individuals have the same value for that variable (either both 0 or both 1).
- Otherwise, the two individuals are said to have a "mismatch" on the binary variable.
- Calculating squared Euclidean distances $\sum_{j=1}^{q} (X_{ij} X_{i'j})^2$ between each pair of rows of this sort of data matrix of 0's and 1's amounts to counting the total number of mismatches for each pair of objects.
- Once we calculate the distances, we can input them into a standard clustering algorithm like K-medoids or a hierarchical method.

Meaning of Matches and Mismatches for Binary Data

- Using squared Euclidean distance essentially treats 0-0 matches and 1-1 matches as equally important. Is this appropriate?
- It depends on the situation: If the binary variable is measuring a very rare (or very common) characteristic, then a 1-1 match may be more meaningful than a 0-0 match (or vice versa).
- If $X_i = 1$ if an individual is a strict vegan and 0 otherwise, then a 1-1 match might indicate two similar individuals, but a 0-0 match would be less informative.
- If $X_i = 1$ if an individual knows how to read and 0 otherwise, then a 0-0 match might indicate two similar individuals, but a 1-1 match would be less informative.

Other Measures of Distance for Binary Data

• Define a 2×2 table counting the matches (a = total 0-0 matches, d = total 1-1 matches) and mismatches (b = total 0-1 mismatches, c = total 1-0 mismatches) for a pair of objects:



• Defining the distance between the two objects to be $\frac{b+c}{q}$ gives equal weights to 0-0 matches and 1-1 matches.

Other Measures of Distance for Binary Data (Continued)

- Defining the distance between the two objects to be $\frac{b+c}{b+c+d}$ ignores 0-0 matches, treating them as irrelevant (vegan example?).
- Defining the distance between the two objects to be $\frac{b+c}{a+b+c}$ ignores 1-1 matches, treating them as irrelevant (reading example?).
- Several other distances measures based on *a*, *b*, *c*, *d* are possible (see Johnson and Wichern, p. 674).

Gower Dissimilarities for Clustering Mixed Data

- Sometimes we have data that are **mixed data** having different variable types.
- For example, perhaps some of the variables are numerical, others are binary or nominal, and maybe still others are ordinal (categorical with *ordered* categories).
- Gower (1971) developed a dissimilarity measure for mixed data that combine contributions to the dissimilarity from each variable.
- For any pair of individuals, we have the following rules for calculating the Gower dissimilarity between those two individuals:

Calculation of Gower Dissimilarities

- For a nominal or binary variable, the contribution is 1 if the two individuals do not have matching categories on that variable and 0 if the individuals match on that variable.
- For a numerical variable, the contribution is the absolute difference in the variable's values for the two observations, divided by the total range (max min) for that variable in the data set.
- For an ordinal variable, the categories are numerically labeled $1, 2, \ldots$ and then the contribution is calculated the same way as for numerical variables.
- The overall Gower dissimilarity is the mean (possibly weighted, if desired) of the contributions of each of the variables.

Clustering Mixed Data

- \bullet The Gower dissimilarities can be calculated using the <code>daisy</code> function in R.
- The nominal variables should be saved as factor columns and the ordinal variables should be saved as ordered columns in R.
- Once we calculate the distances, we can input them into a standard clustering algorithm like K-medoids or a hierarchical method.
- This method is implemented in R on the heart disease data set.