One-Way Analysis of Variance

- With <u>regression</u>, we related two quantitative, typically <u>continuous</u> variables.
- Often we wish to relate a quantitative <u>response</u> variable with a qualitative (or simply discrete) independent variable, also called a <u>factor</u>.
- In particular, we wish to compare the mean response value at <u>several levels</u> of the discrete independent variable.

Example: We wish to compare the mean wage of farm laborers for 3 different races (black, white, Hispanic). Is there a difference in true mean wage among the ethnic groups?

- If there were only 2 levels, could do a: 2-sample t-test
- For 3 or more levels, must use the Analysis of Variance (ANOVA).
- The Analysis of Variance tests whether the means of t populations are equal. We test:

Ho: $M_1 = M_2 = \cdots = M_t$ Ha: At least one equality is not satisfied (at least two population means differ) • Suppose we have t = 4 populations. Why not test:

Ho:
$$M_1 = M_2$$
, Ho: $M_1 = M_3$, Ho: $M_1 = M_4$,
Ho: $M_2 = M_3$, Ho: $M_2 = M_4$, Ho: $M_3 = M_4$
with a series of t-tests?

- If each test has $\alpha = .05$, probability of correctly failing to reject H₀ in all 6 tests (when all nulls are true) is: $(.95)^6 = .735$
- \rightarrow Actual significance level of the procedure is 0.265, not $0.05 \rightarrow$ We will make <u>some</u> Type I error with probability 0.265 if all 4 means are truly equal.

Why Analyze Variances to Compare Means?

• Look at Figure 6.1, page 248.

Case I and Case II: Both have independent samples from 3 populations.

- The positions of the 3 sample means are the same in each case.
- In which case would we conclude a definite difference among population means μ_1 , μ_2 , μ_3 ?

Case I? Yes. Variance between sample means is large relative to variance within samples.

Case II? No. Variance between sample means is small relative to variance within samples.

• This comparison of variances is at the heart of ANOVA.

Assumptions for the ANOVA test:

- (1) There are t independent samples taken from tpopulations having means $\mu_1, \mu_2, ..., \mu_t$.
- (2) Each population has the same variance, σ^2 .
- (3) Each population has a normal distribution.
- The data (observed values of the response variable)

are denoted: γ_{ij} i=1,...,t which sample $j=1,...,n_i$ which observation within twhich observations.

• Each sample has size n_i , for a total of $\sum_{i=1}^{t} n_i$ observations.

Example: Y47 = 7th observation in the 4th sample

Notation

The *i*-th level's total: Y_{i0} (sum over *j*)

The *i*-th level's mean: $\overline{Y}_{i} = \gamma_{i} / \eta_{i}$

The overall total: $Y_{\bullet \bullet}$ (sum over i and j)

The overall mean: $\overline{Y}_{\bullet \bullet} = \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=$

Estimating the variance σ^2

• For i = 1, ..., t, the sum of squares for each level is

$$\mathbf{SS}_{i} = \sum_{j=1}^{n_{i}} (\gamma_{ij} - \overline{\gamma}_{i})^{2} = \sum_{j=1}^{n_{i}} \gamma_{ij}^{2} - \frac{(\gamma_{i0})^{2}}{n_{i}}$$

• Adding all the SS_i 's gives the pooled sum of squares:

• Dividing by our degrees of freedom gives our estimate

of
$$\sigma^2$$
:

$$S_p^2 = \frac{SS_p}{(\Sigma n_i) - t} = \frac{\sum (n_i - 1)S_i^2}{\sum n_i - t}$$

• Recall: For 2-sample t-test, pooled sample variance

was:

$$S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$$

- This is the correct estimate of σ^2 if all t populations have equal variances.
- We will have to check this assumption.

Development of ANOVA F-test

- Assume sample sizes all equal to n: $n_1 = n_2 = ... = n_t (= n) \leftarrow \text{balanced data}$
- Suppose H_0 : $\mu_1 = \mu_2 = ... = \mu_t (= \mu)$ is true.
- Then each sample mean $\overline{Y}_{i\bullet}$ has mean \mathcal{M} variance σ^2/ν
- Treat these group sample means as the "data" and treat the overall sample mean as the "mean" of the group means. Then an estimate of σ^2 / n is:

$$S_{\text{means}}^2 = \frac{\sum_{i} (\overline{y}_{i.} - \overline{y}_{..})^2}{t - 1}$$

⇒) n Smeans is an estimate of o².

Recall: Sp was another estimate of 52 (independent of nSmeans) when the populations are normal.

Consider the statistic:

when the populations are normal estimate of
$$\sigma^2$$

P* = $\frac{1}{S_p^2}$

Special estimate of σ^2

estimate of σ^2

estimate of σ^2

- With normal data, the ratio of two independent estimates of a common variance has an F-distribution.
- \rightarrow If H₀ true, we expect F* has an F-distribution.

(This F* ratio should be "near" 1 if Ho true)

• If H_0 false $(\mu_1, \mu_2, ..., \mu_t \text{ not all equal})$, the sample means should be more spread out.

→ nS_{means} should be larger than under Ho.

→ F* ratio should be bigger than 1 if

General ANOVA Formulas (Balanced or Unbalanced)

- We want to compare the variance <u>between (among)</u> the sample means with the variance within the different groups.
- Variance between group means measured by:

 $SSB = \sum_{n_i}^{t} \frac{y_{i,n_i}^2}{n_i} - \frac{y_{i,n_i}^2}{5n_i}$

and, after dividing by the "between groups" degrees of freedom,

(analogous to n Smeans) MSB = SSB t-1 "between-groups mean square"

Variance within groups measured by:

also called

Variance within groups measured by:

$$\frac{y_{i,2}^2}{n_i} - \sum_{i=1}^{i} \frac{y_{i,2}^2}{n_i}$$

and, after dividing by the "within groups" degrees of (analogous to S_P^2) freedom,

$$MSW = \frac{SSW}{\Sigma ni - t}$$

C"within groups" mean square

- F* = MSB • In general, our F-ratio is:
- Under Hog F* has an F-distribution with:

• The total sum of squares for the data:

can be partitioned into

• The degrees of freedom are also partitioned:

Total
$$df = "Between groups" $df + "Within groups" df$

$$\left(\sum_{i=1}^{n} (z_{i} - 1) = (z_{i} - 1) + (\sum_{i=1}^{n} z_{i} - z_{i})\right)$$$$

• This can be summarized in the ANOVA table:

Source	<u>df</u>	SS	MS	F *
Between	t-1	SSB	MSB	MSB/MSW
Within	Ini-t	SSW	MSW	/
Total	∑ni-1	TSS		

Example: Table 6.4 (p. 253) gives yields (in pounds/acre) for 4 different varieties of rice (4 observations for each variety)

$$n_1 = n_2 = n_3 = n_4 = 4 \Rightarrow Zn_i = 16$$

$$\sum_{i} \frac{Y_{i}^{2}}{n_{i}} = \frac{3938^{2}}{4} + \frac{3713^{2}}{4} + \frac{3754^{2}}{4} + \frac{4466^{2}}{4}$$

$$\frac{Y_{i}^{2}}{\sum n_{i}} = \frac{15,832,971.25}{16} = 15,743,040.06$$

$$\sum Y_{ij}^{2} = \frac{934^{2} + 1041^{2} + ... + 1140^{2} + 1191^{2}}{= 15,882,847}$$

$$\mathbf{SSW} = \frac{15882847 - 15832971.25}{= 49875.75}$$

MSB =
$$89931.2/3 = 29977.07$$
,
ANOVA table for Rice Data:

$$SB = 89931.2/3 = 29977.07$$
, $MSW = \frac{49875.75}{12}$
ANOVA table for Rice Data: $= 4156.31$
urce 16 SS MS $F*$

 $F^* = 29977.07 / 4156.31 = 7.21$

• Back to original question: Do the four rice varieties have equal population mean yields or not?

 H_0 : $\mu_1 = \mu_2 = \mu_3 = \mu_4$

Ha: At least one equality is not true

Test statistic: $F^* = 7.21$

from Table $F_{.05,3,12} = 3.49 + p.731$

At $\alpha = 0.05$, compare to:

Conclusion:

If F*> Fx we reject Ho. 7.21>3.49, so reject Ho. We have sufficient evidence to conclude a difference among mean yields for the 4 varieties.

"Treatment Effects" Linear Model:

Our ANOVA model equation:

 $Y_{ij} = \mathcal{M}_i + \mathcal{E}_{ij}$, i=1,...,t, j=1,...,n; Yij = j-th response value from i-th sample

Mi = mean of population i Eij = random error term

Denote the i-th "treatment effect" by:

Li= Mi-M 1 "overall mean"

• The ANOVA model can now be written as:

$$Y_{ij} = M + T_i + \epsilon_{ij}, \quad \Sigma_i T_i = 0$$

• Note that our ANOVA test of:

 H_0 : $\mu_1 = \mu_2 = ... = \mu_t$

is the same as testing:

Note: For balanced data,

 $E(MSB) = \sigma^2 + \frac{n}{1 - 1} \sum_{i=1}^{2} and E(MSW) = \sigma^2$

If H_0 is true (all $\tau_i = 0$): MSB and MSW should be approx. equal (their ratio ≈ 1)
If H_0 is false:

MSB should be somewhat greater than MSW.