One-Wayv Analysis of Variance

e With regression, we related two quantitative, typically
continuous variables.

¢ Often we wish to relate a quantitative response
variable with a qualitative (or simply discrete)
independent variable, also called a factor.

e In particular, we wish to compare the mean response
value at several levels of the discrete independent
variable. (O,f- @J’-Qj or cou(

Example: We wish to compare the mean wage of farm
laborers for 3 different races (black, white, Hispanic).
Is there a difference in true mean wage among the
ethnic groups?

o If there were only 2 levels, could do a: Z—Scuvtf le t-test

® For 3 or more levels, must use the Analysis of
Variance (ANOVA).

® The Analysis of Variance tests whether the means of ¢
populations are equal. We test:
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® Suppose we have ¢ = 4 populations. Why not test:
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with a series of t-tests?

® If each test has o = .05, probability of correctly failing
to reject Ho in all 6 tests (when all nulls are true) is: ( 0[5‘) 735

— Actual significance level of the procedure is 0.265,
not 0.05 — We will make some Type I error with
probability 0.265 if all 4 means are truly equal.

Why Analyze Variances to Compare Means?

® Look at Figure 6.1, page 248.

Case I and Case II: Both have independent samples
from 3 populations.

® The positions of the 3 sample means are the same in
each case,

® In which case would we conclude a definite difference

among population_means L, L2, 13?
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® This comparison of variances is at the heart of
ANOVA,

Assumptions for the ANOVA test:

(1) There are # independent samples taken from ¢
populations having means W, i, ..., L.

(2) Each population has the same variance, 2.
(3) Each population has a normal distribution.

® The data (observed values of the response variable)

are denoted: \/ . | +
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observations.
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Notation

The i-th level’s total: Y. (sum over j)
The i-th level’s mean: Y., = Y, /n}_
The overall total: Y., (sum over i and j)
The overall mean: Y,, = '
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Estimating the variance ¢*

e Fori=1,...,¢ the sum of squares for each level is
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Ny

e Adding all the SS/’s gives the pooled sum of squares:
SS o = Z_ SS;

° Di;ziding by our de;rees of frzedom gives our estimate
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e Recall: For 2-sample t-test, pooled sample variance
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e This is the correct estimate of o if all # populations
have equal variances.

e We will have to check this assumption.



Development of ANOVA F-test

e Assume sample sizes all equal to n:
ny=ny=...= n (= n) — balanced data

e Suppose Ho: pi = 2 = ... = W (= p) is true.
® Then each sample mean _, has mean M and

a3 R
variance © n

e Treat these group sample means as the “data” and
treat the overall sample mean &s the “mean” of the
group means. Then an estimate of 62/ n is:
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e With normal data, the ratio of two independent
estimates of a common variance has an F-distribution.

— If Hj true, we expect F* has an F-distribution.

(This F* ratio should be near 1 +f Ha true )
o If Hy false (L1, L2, ..., }i nOt all equal), the sample
means should be more spread out.
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General ANOVA Formulas (Balanced or Unbalanced)

e We want to compare the variance between (among)
the sample meaus with the variance within the different

groups.

e Variance between group means measured by:
2
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and, after dividing by the “between groups” degrees of

freedom,
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e Variance within ﬂroups mezasured by:

Yi.o
also called -

SE
° and, after dividing by the “within groups” degrees of

freedom
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® In general, our F-ratio is: F x _ MSB
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e Under Hy. F* has an F-distribution with:

df = (f—l) zm—f)

e The total sum of squares for the data:
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can be partitioned into

TSS= SSRB + SS W/

® The degrees of freedom are also partitioned:
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® This can be sumrnarized in the ANOVA table:

Source df SS MS F*
Between  +-1 SSB MSB MSB/MSW
\/\.J\“H/\EVl S, -t SSW M S
To+xl 2ng — | 1TSS

Example: Table 6.4 (p. 253) gives yields (in
pounds/acre) for 4 different varieties of rice (4
observations for each variety)

=4 levels
V\I:V\Z:V\B:V\L’: Lf = ZV\L - lé
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SSB= [5832971.25 ~15743040.6¢
= %9%31.2
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SSW = IS ¥82%47—15%32971.25
= 49875, 7s
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MSB= 899312 /3 = 2997707 MW= L 70
ANOVA table for Rice Data: = Y415¢. 3/
Sou_wce_ cl‘@ 2_ MS F%
Between 3 397312 29377.07 7.2
LW v | 2 4937S,75  HI56.31 A
Tot] S 13930695

F*¥=29977.07 /4(5¢.3} = 7.2}
e Back to original question: Do the four rice varieties
have equal population mean yiclds or not?

Ho: pu = 2 = 13 = Ly
H.: At least one equality is not true

Test statistic: F G = 7 2 | ,me T«.lo e
/ A4 A)
At a = 0.05, compare to: = 3 Y
P F:oS’}?a, 12 3 Lm F

Conclusion:

I P> F, we reeet Koo 70212349, so regect
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“Treatment Effects” Linear Model:

Our ANOVA model equation:

YLJ = M4 “'ELJ' ) L-‘—|)~-)‘t} J:l)- SLY
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Denote the i-th “treatment effect” by:

T, = M{ — M
T “ouex‘au m e
® The ANOVA moadel can now be written as:
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e Note that our ANOVA test of:

Ho: K1 = U2 = ... = it
is the same as testing:
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