Chapter 27: <u>Repeated Measures Designs</u>

• Occur when several observations are taken (over time) <u>on the</u> <u>same subject</u>.

• For a group of *s* subjects, each subject is given a sequence of *r* treatments.

• Because observations on the same subject are likely to be similar, the subjects play the role of

Example 1: In several cities, a fast-food chain produces four different advertising campaigns (given in January, March, May, July). The sequencing of the campaigns is randomly chosen in each city.

<u>Response</u>: Sales for that month <u>Subjects</u>:

Example 2: For a sample of sick patients, 5 different drugs are given in sequence over a period of time. The order of the drugs is randomly chosen for each patient.

<u>Response</u>: Improvement in white blood cell count <u>Subjects</u>:

• The analysis is identical to that of a RCBD, with the subjects serving as blocks.

• Typically, the subjects are a random sample.

Model:

As with a mixed model,

• The ANOVA and tests are identical in this model to the RCBD analyses.

• If two observations near in time within a subject have a different correlation than two observations far apart in time within a subject, then this compound-symmetry assumption is <u>not</u> appropriate.

• More advanced methods must be used in that case (see the conservative test method given in Comment 2, pg. 1065).

• This compound-symmetry assumption can be examined by viewing the estimated within-subjects variance-covariance matrix, with entries:

Example (Wine data): Checking model assumptions:

Inferences comparing the four wines:

Section 27.3 discusses two-factor experiments with repeated measures on one of the factors.
Example (shoe data): <u>Response</u>: Sales
<u>Factor A</u>: Type of Advertising Campaign
<u>Factor B</u>: Time (1 = before, 2 = during, 3 = after campaign)
Subjects: 10 test markets (chosen at random)

Note: Five of the test markets received campaign 1, and the other five received campaign 2 (subjects are "nested" within factor A – more about this later).

Note: If the data in such a study are <u>unbalanced</u>, the methods of Section 25.7 must be used (in SAS, use PROC MIXED in unbalanced case rather than PROC GLM).

Nonparametric Methods in ANOVA

In ANOVA, sometimes the normality assumption for the response may not be reasonable (even after transformation?)
Some rank-based distribution-free alternatives to the common ANOVA tests have been developed.

Kruskal-Wallis Test

• An alternative to the one-way ANOVA F-test:

Model:

• We assume the *r* populations are continuous and identical (in shape, variance, etc.) except possibly for their <u>centers</u>.

• Procedure: rank the entire data set from 1 (smallest) to n_T (largest), in ascending order of response values. (If there are tied values, midranks are used.)

• Replace the response values with their <u>ranks</u> and perform the ANOVA calculations on the ranks.

The Kruskal-Wallis test statistic is

• Our hypotheses are:

• For large samples (rule of thumb:

)

Note: If the ranks inside one treatment vary greatly from the ranks inside other treatment(s):

• With small samples, tables/software are available for performing the K-W test based on the exact null distribution of χ^{2*}_{KW} .

Example (Soil data):

<u>Response</u>: Percentage of clay in soil <u>Factor</u>: Location (4 different levels) • Six observations were made in each location.

Boxplots show

SAS/R Results:

• Bonferroni procedure provides simultaneous rank-based testing limits for

• For our example:

Friedman Test

• A distribution-free test for treatment effects for a RCBD.

Model:

• We assume each treatment appears <u>once</u> within each block.

• Block effects could be random; in that case, ρ_i and ϵ_{ij} need <u>not</u> have a normal distribution, merely a continuous distribution.

Hypotheses:

<u>Procedure</u>: Rank all responses <u>within each block</u> in ascending order, from 1 (smallest) to *r* (largest).

• Perform ANOVA calculations for RCBD on the <u>within-block</u> <u>ranks</u>.

The Friedman test statistic is:

• For large samples (rule of thumb:

• For small samples, tables of critical values are available for exact tests based on $\chi^{2*}{}_{F}$.

Example (Wind speed data):

<u>Response</u>: average wind speed reduction <u>Treatments</u>: 5 different distances to shelterbelt (line of trees) <u>Blocks</u>: 9 different months

• Is there a significant effect on mean wind speed reduction?

<u>Note</u>: When each treatment appears $d \ge 2$ times within each block, the <u>Mack-Skillings test</u> is an appropriate extension of Friedman's test.

<u>Note</u>: Cochran's test is a version of Friedman's test for binary responses.

Note: When *r* = 2, the K-W test reduces to the _____

When *r* = 2, the Friedman test reduces to the _____