
Chapter 14:  Generalized Linear Models (GLMs) 

 

• GLMs are a useful general family of models having three 

characteristics: 

 

(1) The response values Y1, …, Yn are independent and follow a 

distribution that is in the exponential family; i.e., the density 

may be written in the form: 

 

 

 

 

 

 

 

Note: Using this form, 

 

(2) The model has a linear predictor (based on the predictor 

variables X1, …, Xk) denoted: 

 

 

 

(3) There is a monotone link function g(∙) that relates the mean 

response E(Yi) = i to the linear predictor: 

 

 

 

Note:  Our classical regression model for normal data, 

 

 

 

is a GLM: 

 

Why? 

 



(1) Normal distribution is in the exponential family: 

 

 

 

 

 

 

 

 

 

(2) A linear predictor is clearly used. 

 

(3) It uses the “identity” link function: 

 

• We now study GLMs for two other common types of data. 

 

Logistic Regression 

 

• First we consider situations in which the response variable is 

binary (has two possible outcomes). 

 

Example 1:  Study of the effect of various predictors (age, 

weight, cholesterol, smoking level) on the incidence of heart 

disease.  For each individual, the response Y = 1 if the person 

developed heart disease, and Y = 0 if no heart disease. 

 

Example 2:  We examine the effect of study habits on passing 

the state driver’s test.  For each examinee, the response is Y = 1 

if the examinee passed the test, and Y = 0 if the examinee failed 

the test. 

 

• We assume each Yi is a Bernoulli r.v. with  

 

 

Therefore 



• If we were to use a standard regression model, say,  

E(Yi) = 0 + 1Xi, then  

 

 

 

 

Problems with using the standard model: 

 

(1) Errors are clearly non-normal since Yi can only be 0 or 1. 

 

(2) Error variance is not constant.   

• A Bernoulli r.v. has variance  

 

• If E(Y) =  = 0 + 1X, then this variance is 

 

 

→ 

 

→ 

 

(3) Most importantly, since E(Y) is a probability here, it should 

always be between 0 and 1. 

• For the model E(Y) = 0 + 1X, 

 

 

 

 

 

 

 

 

 

 

 

 



• A better model for binary data is the Logistic Mean Response 

Model: 

 

 

 

 

 

• This function is constrained to fall between 0 and 1. 

• It has a sigmoidal (“S”) shape. 

• It approaches 0 or 1 at the left/right limits. 

• It is monotone. 

• The value of 1 determines whether the function is increasing 

or decreasing: 

 

 

 

 

 

 

 

 

 

 

Note: 

 

 

So the odds that Yi = 1, defined as                                          are: 

 

 

 

 

 

 

 

under this model. 



• So the log-odds that Yi = 1 (also called the logit of i) is: 

 

 

 

Note: This logistic regression model is a GLM.  

 

(1) Yi has a distribution in the exponential family: 

 

 

 

 

 

 

 

(2) Linear predictor is present. 

(3) The link function is the logit: 

 

 

• We could use other link functions for binary data. 

 

• Letting g(i) = –1(i), the inverse of a standard normal cdf), 

yields a probit model. 

• Letting g(i) = ln[–ln(1 – i)] yields a complementary log-log 

model. 

 

• Logistic and probit models have a symmetric property:  If the 

coding of 0’s and 1’s in the data is reversed, the signs of all 

coefficients are reversed.  (c-log-log does not have this)  

 

Estimating a Simple Logistic Regression Model 

 

• The parameters 0 and 1 are generally estimated via 

maximum likelihood (we do not use ordinary least squares 

because of the nonconstant error variance problem). 



• Estimates b0 and b1 may be found using SAS or R. 

 

Fitted logistic model: 

 

 

 

 

 

 

 

Example (Programming Task data, Table 14.1): 

 

Y = completion of task: 

 

X = amount of programming experience (in months) 

 

From SAS’s PROC LOGISTIC: 

 

 

Example: 

 

 

 

 

Interpreting b1: 

 

 

 

 

 

 

 

 

 

 



Example (Programming task): 

 

 

 

 

 

 

 

Note: 

 

 

Multiple Logistic Regression 

 

• This simply extends the linear predictor to include several 

predictor variables: 

 

 

 

 

• Again, maximum likelihood is used to find estimates b0, b1, …, 

bk. 

 

Example (Disease outbreak, modified from Table 14.3): 

 

Y = disease status (1 = yes, 0 = no) 

X1 = age (quantitative) 

X2 = city sector of residence (qualitative, 0 or 1) 

 

SAS example: 

 

 

 

 

 

 



Note:  When all predictors are qualitative, the logistic 

regression model is often called a log-linear model (very 

common in categorical data analysis). 

 

Inferences About Regression Parameters 

 

• To determine the significance of individual predictors on the 

binary response variable, we may use tests or CIs about the 

j’s. 

 

Testing whether all j’s are zero (Likelihood Ratio Test) 

 

 

 

 

• Use Full Model vs. Reduced Model approach. 

 

Test statistic is: 

 

 

 

 

LR = maximized likelihood function under reduced model 

LF = maximized likelihood function under full model 

 

For large samples, under H0, 

 

 

 

• Reject H0 when full model is 

 

 

• A similar full/reduced test can be used to test whether some 

(not all) predictor variables are needed. 

 



SAS example (disease outbreak): 

 

 

 

 

 

 

Test About a Single Parameter 

 

• To test whether a single predictor is useful, we could use a 

form of the LR test. 

• Another approach is the Wald test. 

 

Note:  For large samples, maximum likelihood estimates are 

approximately normal. 

 

Hence, for any predictor Xj, 

 

 

 

 

 

Hence to test  

 

we may use: 

 

 

 

• Often computer packages will report the Wald chi-square 

statistic (z*)2 and use the 2
1 distribution to obtain the P-value. 

 

• This is completely equivalent to the (two-sided) z-test. 

 

 

 



• An approximate (large-sample) 100(1 – )% CI for j is: 

 

 

 

and thus an approximate 100(1 – )% CI for the odds ratio for 

predictor Xj is: 

 

 

 

SAS example: 

 

 

 

 

 

 

 

 

 

 

 

 

Model Selection 

 

• This is done similarly as in linear regression. 

• The SELECTION=STEPWISE option can be used in the 

MODEL statement. 

 

• SAS gives values of  

 

 

 

for each fitted model, where L = maximized likelihood function 

for that model. 

• Again, models with small AIC and small BIC are preferred. 



Tests for Goodness of Fit 

 

• We typically wish to formally test whether the logistic model 

provides a good fit to the data. 

 

• The Hosmer-Lemeshow test breaks the data into c classes 

(usually between 5 and 10) and compares the observed number 

of successes (Y = 1 values) in each class to the expected number 

under the logistic model. 

 

• The Hosmer-Lemeshow test statistic has an approximate ___ 

distribution under 

 

 

 

• A small p-value indicates the logistic model does not fit well. 

 

• SAS and R will give P-values of the H-L test (see examples). 

 

 

 

Residuals: 

 

• In logistic regression, the ordinary residuals 

 

 

 

 

 

are not too meaningful. 

 

• The Pearson residuals are obtained by dividing by the 

estimated standard deviation of Yi: 

 



• The INFLUENCE option gives Pearson residuals and other 

diagnostic measures. 

 

• A 
ipr  value with large magnitude 

indicates a possible outlier. 

 

CI for the “Mean Response” h 

 

• For a particular x-value Xh (or set of values  

 

we may wish to estimate 

 

 

 

 

• A point estimate              is obtained simply by 

  

 

• If  }ˆ{ hs  is the estimated standard error of ,ˆ
h  by 

maximum likelihood theory, for large samples: 

 

 

 

 

→ A large-sample approximate 100(1 – )% CI for h  is: 

 

 

 

• In practice, SAS or R will find these. 

 

Example:  Find a 90% CI for the probability that 

programmers with 10 months experience are successful at the 

task. 



Predicting a New Observation 

 

• A simple rule for predicting Yh for a new observation having 

predictor values Xh is: 

 

 

 

 

 

 

 

• This assumes outcomes 0 and 1 are equally likely in the 

population. 

 

• Another option is to use a different cutoff than 0.5; use the 

cutoff for which the fewest observations in the sample are 

“misclassified”. 

 

Poisson Regression (Count Regression) 

 

• This is used when the response variable Y represents a count 

(the number of occurrences of an event). 

 

Example 1: number of trips to a grocery store per month by a 

household 

Example 2: number of cars passing an intersection per minute 

 

• When the counts in a data set are very large, we may view Y 

as an approximately normal r.v. and use standard linear 

regression. 

 

• When counts are typically small to moderate, we should use 

specialized count regression methods. 

 



• The Poisson regression model is a GLM appropriate for 

modeling counts:  

 

• If Y ~ Poisson(), then  

 

 

 

 

 

 

 

 

 

 

 

 

 

• The most common link function for Poisson regression is the  

 

 

So 

 

 

 

 

 

 

• Fitting the model (estimating 0, 1, …, k) is again done via 

maximum likelihood. 

 

Example (Miller lumber):  A store surveyed its customers from 

110 census tracts. 

• The response Yi = the number of customers from each census 

tract, i = 1, …, 110. 

 



• We model Yi using a Poisson distribution. 

• They also measured other variables for the 110 tracts. 

 

Poisson regression of Y against X1 = # of housing units: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• Inference about several parameters is again done with the 

Likelihood Ratio test. 

 

• For large samples, approximate CIs and tests about 

individual parameters can be done with the Wald statistic. 

 

Miller lumber example: 

 

 

 

 

 

 

 

 

 

 



• Goodness of fit may be checked with the “residual deviance”: 

 

 

 

 

or Pearson’s 2 statistic = 

 

• These each have an approximate                         distribution 

when the Poisson is the correct model. 

 

• Values of Dev or 2 much larger than n – k – 1 indicate a poor 

fit. 

 

• The contributions of each observation to Dev or 2 are the 

“deviance residuals” or “Pearson residuals” and these are 

examined to detect outliers. 

 

• Model selection is often based on AIC, as with logistic 

regression (see multiple Poisson regression example). 

 

 

 

 

 

 

Prediction:  SAS or R gives predicted mean response values, 

and CIs for .ˆ
i  

 

Example: 


