Chapter 14: Generalized Linear Models (GLMs)

e GLMs are a useful general family of models having three
characteristics:

(1) The response values Y4, ..., Yn are independent and follow a

distribution that is in the exponential family; i.e., the density
may be written in the form:

Note: Using this form,

(2) The model has a linear predictor (based on the predictor
variables Xj, ..., Xk) denoted:

(3) There is a monotone link function g(-) that relates the mean
response E(Yi) = ui to the linear predictor:

Note: Our classical regression model for normal data,

isa GLM:

Why?



(1) Normal distribution is in the exponential family:

(2) A linear predictor is clearly used.
(3) It uses the “identity” link function:
* We now study GLMs for two other common types of data.

Loqgistic Regression

e First we consider situations in which the response variable is
binary (has two possible outcomes).

Example 1: Study of the effect of various predictors (age,
weight, cholesterol, smoking level) on the incidence of heart
disease. For each individual, the response Y = 1 if the person
developed heart disease, and Y = 0 if no heart disease.

Example 2: We examine the effect of study habits on passing
the state driver’s test. For each examinee, the responseisY =1
iIf the examinee passed the test, and Y = 0 if the examinee failed
the test.

* We assume each Y is a Bernoulli r.v. with

Therefore



* If we were to use a standard regression model, say,
E(Yi) = Bo + BXi, then

Problems with using the standard model:
(1) Errors are clearly non-normal since Yi can only be 0 or 1.

(2) Error variance is not constant.
» A Bernoulli r.v. has variance

* If E(Y) = m = Bo + B1X, then this variance is

—

(3) Most importantly, since E(Y) is a probability here, it should
always be between 0 and 1.
 For the model E(Y) = Bo + B1X,



* A better model for binary data is the Logistic Mean Response
Model:

 This function is constrained to fall between 0 and 1.
e It has a sigmoidal (“S™) shape.

o It approaches 0 or 1 at the left/right limits.

* [t is monotone.

* The value of B1 determines whether the function is increasing
or decreasing:

Note:

So the odds that Yi = 1, defined as are:

under this model.



* So the log-odds that Yi = 1 (also called the logit of mi) is:

Note: This logistic regression model is a GLM.

(1) Yi has a distribution in the exponential family:

(2) Linear predictor is present.
(3) The link function is the loqgit:

» \We could use other link functions for binary data.

e Letting g(mi) = ®!(mi), the inverse of a standard normal cdf),
yields a probit model.

o Letting g(mi) = In[-In(1 — =i)] yields a complementary log-log
model.

e Logistic and probit models have a symmetric property: If the
coding of 0’s and 1°s in the data is reversed, the signs of all
coefficients are reversed. (c-log-log does not have this)

Estimating a Simple Loqgistic Regression Model

e The parameters Bo and B:1 are generally estimated via
maximum likelihood (we do not use ordinary least squares
because of the nonconstant error variance problem).



e Estimates boand bi may be found using SAS or R.

Fitted logistic model:

Example (Programming Task data, Table 14.1):
Y = completion of task:
X =amount of programming experience (in months)

From SAS’s PROC LOGISTIC:

Example:

Interpreting ba:



Example (Programming task):

Note:

Multiple Logistic Regression

 This simply extends the linear predictor to include several
predictor variables:

» Again, maximum likelihood is used to find estimates bo, by, ...,
b.

Example (Disease outbreak, modified from Table 14.3):
Y = disease status (1 = yes, 0 = no)
X1 = age (quantitative)

X2 = city sector of residence (qualitative, 0 or 1)

SAS example:



Note: When all predictors are qualitative, the logistic
regression model is often called a log-linear model (very
common in categorical data analysis).

Inferences About Regression Parameters

 To determine the significance of individual predictors on the
binary response variable, we may use tests or Cls about the

Bj’s.

Testing whether all Bj’s are zero (Likelihood Ratio Test)

» Use Full Model vs. Reduced Model approach.

Test statistic is:

Lr = maximized likelihood function under reduced model
Lr = maximized likelihood function under full model

For large samples, under Ho,

* Reject Ho when full model is

» A similar full/reduced test can be used to test whether some
(not all) predictor variables are needed.



SAS example (disease outbreak):

Test About a Single Parameter

 To test whether a single predictor is useful, we could use a
form of the LR test.
» Another approach is the Wald test.

Note: For large samples, maximum likelihood estimates are
approximately normal.

Hence, for any predictor X;,

Hence to test

we may Use:

» Often computer packages will report the Wald chi-square
statistic (z*)? and use the x% distribution to obtain the P-value.

 This is completely equivalent to the (two-sided) z-test.




« An approximate (large-sample) 100(1 — a)% CI for Bj is:

and thus an approximate 100(1 — a)% CI for the odds ratio for
predictor Xj is:

SAS example:

Model Selection

e This is done similarly as in linear regression.
e The SELECTION=STEPWISE option can be used in the
MODEL statement.

» SAS gives values of

for each fitted model, where L = maximized likelihood function
for that model.
 Again, models with small AIC and small BIC are preferred.



Tests for Goodness of Fit

» We typically wish to formally test whether the logistic model
provides a good fit to the data.

» The Hosmer-Lemeshow test breaks the data into ¢ classes
(usually between 5 and 10) and compares the observed number
of successes (Y = 1 values) in each class to the expected number
under the logistic model.

» The Hosmer-Lemeshow test statistic has an approximate
distribution under

» A small p-value indicates the logistic model does not fit well.

* SAS and R will give P-values of the H-L test (see examples).

Residuals:

* In logistic regression, the ordinary residuals

are not too meaningful.

» The Pearson residuals are obtained by dividing by the
estimated standard deviation of Yi:



» The INFLUENCE option gives Pearson residuals and other
diagnostic measures.

e A I, value with large magnitude
indicates a possible outlier.

ClI for the “Mean Response” 7
 For a particular x-value Xn (or set of values

we may wish to estimate

* A point estimate IS obtained simply by

o If S{ﬁh} Is the estimated standard error of 7%h1 by
maximum likelihood theory, for large samples:

— A large-sample approximate 100(1 — a)% ClI for 7y, is:

* In practice, SAS or R will find these.

Example: Find a 90% CI for the probability that
programmers with 10 months experience are successful at the
task.



Predicting a New Observation

A simple rule for predicting Yn for a new observation having
predictor values Xn is:

 This assumes outcomes 0 and 1 are equally likely in the
population.

» Another option is to use a different cutoff than 0.5; use the
cutoff for which the fewest observations in the sample are
“misclassified”.

Poisson Reqgression (Count Reqgression)

e This is used when the response variable Y represents a count
(the number of occurrences of an event).

Example 1: number of trips to a grocery store per month by a
household
Example 2: number of cars passing an intersection per minute

* When the counts in a data set are very large, we may view Y
as an approximately normal r.v. and use standard linear
regression.

* When counts are typically small to moderate, we should use
specialized count regression methods.




e The Poisson regression model is a GLM appropriate for
modeling counts:

 If Y ~ Poisson(p), then

» The most common link function for Poisson regression is the

So

* Fitting the model (estimating Bo, B, ..., Px) is again done via
maximum likelihood.

Example (Miller lumber): A store surveyed its customers from
110 census tracts.

» The response Yi = the number of customers from each census
tract,i=1, ..., 110.



» \We model Yi using a Poisson distribution.
e They also measured other variables for the 110 tracts.

Poisson regression of Y against X1 = # of housing units:

* Inference about several parameters is again done with the
Likelihood Ratio test.

* For large samples, approximate Cls and tests about
individual parameters can be done with the Wald statistic.

Miller lumber example:




» Goodness of fit may be checked with the “residual deviance”:

or Pearson’s y? statistic =

» These each have an approximate distribution
when the Poisson is the correct model.

« Values of Dev or % much larger than n — k — 1 indicate a poor
fit.

« The contributions of each observation to Dev or 2 are the
“deviance residuals” or “Pearson residuals”® and these are
examined to detect outliers.

» Model selection is often based on AIC, as with logistic
regression (see multiple Poisson regression example).

Prediction: SAS or R gives predicted mean response values,
and Cls for 4-

Example:



