
Chapter 11:  Advanced Remedial Measures 

 

Weighted Least Squares (WLS) 

 

• When the error variance appears nonconstant, a 

transformation (of Y and/or X) is a quick remedy. 

 

• But it may not solve the problem, or it may create an 

inappropriate regression relationship. 

• A more advanced approach is WLS regression. 

 

• If 
2)var( iiY  , then give observations with higher variance 

__________ weight in the regression fitting. 

 

• For example, let                          and use 

 

 

 

 

 

 

 

• But 
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1 ,, n   are typically unknown. 

 

Note 
2

i = 

 

•  Thus 

 

 

• To estimate how i varies a function of Xi (or of iŶ ), regress 

 

 

 



Procedure for Determining Weights wi: 

 

(1) Regress Y against predictor variable(s) as usual (OLS). 

 

(2) Regress absolute residuals |ei| against predictor Xj (if error 

variance is nonconstant as a function of Xj) or against fitted 

values Ŷ  (if error variance is nonconstant as a function of Ŷ ). 

 

(3)  

 

(4) 

 

(5) 

 

• SAS or R will do WLS once we find the weights wi. 

 

SAS Example (Blood pressure data): 

 

 

 

 

 

 

Note:  R2 does not have a standard interpretation with WLS. 

Note:  Standard error of b1 decreases somewhat in the WLS 

regression → 

Note:  If the WLS estimates differ greatly from the OLS 

estimates, we may iterate this algorithm one or two times. 

Note:  In WLS, standard inferences about coefficients may not 

be valid for small sample sizes, when the weights are estimated 

from data. 

Note:  If the MSE of the WLS regression is near 1, then our 

estimation of the “error standard deviation” function is 

trustworthy. 



Ridge Regression and LASSO Regression 

 

• Ridge regression is an advanced remedy for multicollinearity. 

• Idea:  Instead of using our unbiased ordinary estimate        , 

use a biased estimate, denoted 

 

• Although bR is biased, it may have less variance (so that 

multicollinearity is reduced). 

 

Procedure [typically these calculations are done on 

standardized (centered and scaled) regression coefficients]:   

• Add a biasing constant c into the normal equations (see pg. 

433). 

 

• If c = 0, then  

 

• As c increases: 

 

 

 

• R provides automated choices for c, and it will perform ridge 

regression. 

 

R example (body fat data): 

 

 

 

 

 

 

 

 

 

 

 



Disadvantage to ridge regression:  We cannot use ordinary 

inference procedures (bootstrapping can be used for inference) 

 

• Ridge regression is an example of shrinkage estimation:  The 

process will typically “shrink” the least-squares estimates 

toward zero because of the biasing constant. 

• This “shrinkage” increases bias, but reduces variance. 

 

• Ridge regression estimates may be obtained by minimizing 

the penalized least-squares criterion: 

 

 

 

 

• The solution to this is the vector bR that minimizes 

 

 

 

 

 

 

The LASSO is a similar method which chooses b to minimize 

 

 

 

 

 

 

 

• An advantage of LASSO regression (and ridge regression, to 

some degree) is that this constraint leads to some bj’s being set 

very close to zero, so LASSO can be viewed as a method of 

variable selection as well as coefficient estimation. 

 



• Traditionally, ridge regression estimates have been easier to 

obtain computationally than the LASSO estimates. 

• In 2000, an efficient algorithm was developed to solve for the 

LASSO estimates, making LASSO regression very popular. 

 

R example with LASSO regression (body fat data): 

 

 

 

 

 

 

 

 

 

 

Robust Regression 

 

• If we have highly influential observations, we can reduce 

their impact on the regression equation (without discarding 

them entirely) using robust regression methods. 

 

• Similarly, robust regression is effective when the error 

distribution is not normal, but rather heavy-tailed. 

 

• M-estimation is a general class of estimation methods. 

• We choose 

 

 

 

 

 

 

 

 



Note:  (1) If p(u) = u2, then this is  

 

 

(2) If p(u) = |u|, then the criterion is 

 

 

 

• This method is called Least Absolute Residuals (LAR) 

regression, also called L1 regression. 

• It uses absolute residuals rather than squared residuals, so 

the effect of outliers is not as great. 

Note:  Residuals from LAR regression might not sum to zero. 

 

(3) Huber’s method uses a p(.) function that is a compromise 

between least-squares and LAR regression: 

 

 

 

 

 

 

R example (math proficiency data): 

 

 

 

 

 

 

 

 

Note:  Inference on the regression coefficients is more complex 

for robust regression. 

• For large samples, the robust estimators are approximately 

normal, so we can perform approximate CIs and tests about 

the coefficients. 



Inference Using the Bootstrap Method 

 

• We have seen how to perform inference (CIs, tests) with the 

general linear model with normal errors. 

 

• Bootstrapping is a general method of inference that can often 

be used in nonstandard situations when our usual inferential 

methods are not valid. 

 

Examples:  We can evaluate the precision of estimates such as 

estimated coefficients and fitted values in: 

• Weighted least squares  

• Ridge and LASSO regression 

• Robust regression 

 

General Procedure:   

(1)  We select a random sample (of size n), with replacement, 

from the observations in the original sample. 

• This is called a bootstrap sample.  

• This bootstrap sample will likely contain some duplicate 

values from the original data, and some original data will be 

omitted in the bootstrap sample. 

(2) We perform the original regression procedure on the 

bootstrap sample, and obtain the estimate of interest, say, 
]1*[

1b . 

(3) We repeat the sampling with replacement a large number 

(say, B) of times, and for each new bootstrap sample, we obtain 

the estimate of interest, so that we have a collection of 

bootstrap estimates, e.g., 
]*[

1

]1*[

1 ,, Bbb  . 

(4) The estimated standard deviation of these bootstrap 

estimates 
]*[

1

]1*[

1 ,, Bbb   is an estimate of the standard error of 

the original estimator b1 itself. 

 

 

 



Two Types of Bootstrap Sampling in Regression 

 

• “Fixed X resampling” which is used when:   

(1)  

 

(2)  

 

AND (3)  

 

• With fixed X resampling, we fit the original regression and 

sample the residuals e1, …, en, with replacement, to obtain the 

bootstrap sample of n residuals e1*, …, en*. 

• Then the bootstrap sample of response values is 

 

 

• Then we regress the 
*

iY values against the original Xi values to 

obtain the bootstrap estimate, say, 
*

1b . 

• This is done B times, so that we obtain 
]*[

1

]1*[

1 ,, Bbb  . 

 

• “Random X resampling” which is used when:   

(1)  

 

(2)  

 

OR (3)  

 

• With random X resampling, we sample the data pairs (Xi, Yi) 

with replacement, so that we obtain a bootstrap sample of n 

data pairs (Xi*, Yi*). 

• Then we regress the 
*

iY values against the 
*

iX values to obtain 

the bootstrap estimate, say, 
*

1b . 

• This is done B times, so that we obtain 
]*[

1

]1*[

1 ,, Bbb  . 



Bootstrap Confidence Intervals 

 

• Bootstrap CIs are based on the empirical distribution of b1*. 

 

• The percentile method to obtain a 100(1 – )% bootstrap CI 

for, say, 1 is to use the interval (L, U), where 

 

 

 

 

• The reflection method to obtain a 100(1 – )% bootstrap CI 

for, say, 1 is 

 

 

 

 

 

 

• The above methods tend to produce similar results. 

 

• It is recommended to let B be at least 500 when constructing 

bootstrap CIs (often 1000 resamples are used). 

 

Examples in R (Toluca data and blood pressure data): 

 

 

 

 

 

 

 

 

 


