Analysis of $r \times c$ Contingency Tables

Chi-Square Test for Independence

- Suppose we have a sample of \boldsymbol{n} observations, each one classified according to two categorical variables.
- One categorical variable is called the row variable (has r categories) and the other is called the column variable (has c categories).

Model:

Then

Example: (snoring / heart disease)

- Random sample of $\mathbf{2 4 8 4}$ British adults taken.
- Observed their snoring pattern and whether they had suffered from heart disease.
- Results given in a 2×3 contingency table:

Question: Does the incidence of heart disease depend on snoring pattern?

- Let π_{ij} denote the probability of an observation falling in cell (i,j).

Cell Probabilities for ar$\times c$ Contingency Table:

$$
(r=\# \text { of rows, } c=\# \text { of columns) }
$$

Observed Cell Counts for ar $\times \boldsymbol{c}$ Contingency Table

	Column Variable				Row Totals
	11	2	...	c	
	1\| T_{11}	T_{12}	...	$T_{1 \mathrm{c}}$	$T_{1}{ }^{\text {. }}$
Row	$2 \mid T_{21}$	T_{22}	...	$T_{2 c}$	\| T_{2}.
	:	:		:	-
Variable		:		:	-
	$\underline{r} \mid T_{\text {r1 }}$	$T_{\text {r } 2}$...		$T_{\text {r }}$.
Col. Totals	\| T^{1}	$T \cdot 2$...	$T . \mathrm{c}$	\|n

Of interest: Are the two categorical variables independent, or are they associated?
H_{0} : The classifications are independent
H_{a} : The classifications are dependent

Note: Under H_{0} (if the two classifications are independent),
\rightarrow If H_{0} is true, the expected cell count for cell (i, j) is estimated by:

Our $\chi^{\mathbf{2}}$ test statistic is therefore:
where

- When \boldsymbol{n} is large, under \mathbf{H}_{0},
- Large discrepancies between observed and expected counts lead to $a_{\ldots} \ldots \chi^{2 *}$ and provide evidence ___ H_{0}.

We reject H_{0} if:
Rule of Thumb: The large-sample assumption is satisfied if every (estimated) expected cell count is at least 5.

Example: Expected count for cell (1, 1):
All expected counts:
(see handout for details)

Test Statistic

R example: (chisq.test function). R gives \mathbf{P}-value

Chi-Square Test for Homogeneity

- Suppose we take a random sample from each of r populations, and observe the same categorical variable (with c categories) for each sample.

Of interest: Is the set of cell probabilities the same for each population $i=1,2, \ldots, r$?

Note: This differs from the test for independence because of a different sampling process.

- With the test for independence, we:

Here, we:

Again, let $T_{\mathrm{ij}}=$

Example: A survey sampled 150 voters in Upstate SC, 150 in Midlands SC, and 150 in Coastal SC. Voters were asked whether they "approved", "were neutral", or "disapproved" of the governor's performance. The 3×3 table of results:

- Are the true proportions the same across the 3 populations?
- We test H_{0} : " $\left(\pi_{\mathrm{i} 1}, \pi_{\mathrm{i} 2}, \pi_{\mathrm{i} 3}\right)$ are the same for $i=1,2,3$ ".
- The mechanics of the test for homogeneity are exactly the same as for the test for independence!

Test statistic:

Reject H_{0} if

Can calculate $\chi^{2 *}$ by hand, or \mathbf{R} gives:

Note: For the special case of $r=2, c=2$, the χ^{2} test of homogeneity is equivalent to the z-test of $\mathrm{H}_{0}: \pi_{1}=\pi_{2} \mathrm{vs}$. $\mathrm{H}_{\mathrm{a}}: \pi_{1} \neq \pi_{2}$.
Note: If the sample size is not large enough for the $\chi^{\mathbf{2}}$ test, we could: (1) combine two categories into one (not ideal) or
(2) use Fisher's Exact test on the $r \times c$ table.

