Two-Way Tables

- The simplest two-way table is a 2×2 table, with 2 categorical variables, each with 2 categories.
- The analysis of 2×2 tables greatly depends on how the samples were taken from the population.

Inference about 2 Proportions - Two Independent Samples

- Consider taking independent samples (size \boldsymbol{n}_{1} and \boldsymbol{n}_{2}) from two populations and observing the same binary variable for each.

Example: Survey of 160 rural households and 261 urban households, each with one Christmas tree. Observe whether their tree is natural or artificial.
2×2 table:

Model:

Again,

Example above:

Of interest: Estimate $\pi_{1}-\pi_{2}$ (with a CI) or test $\mathrm{H}_{0}: \pi_{1}=\pi_{2}$ (or possibly $\mathrm{H}_{0}: \pi_{1}-\pi_{2}=\Delta_{0}$).

Again, LS (and ML) estimator of $\pi_{i}(i=1,2)$ is:
so LS (and ML) estimator of $\pi_{1}-\pi_{2}$ is:

And by CLT, for large samples,
Again, for large n_{1} and n_{2}, a $100(1-\alpha) \%$ CI for $\pi_{1}-\pi_{2}$ is:

Test statistic for a test of $\mathbf{H}_{0}: \pi_{1}=\pi_{2}$ is:
(Under $H_{0}, \pi_{1}=\pi_{2}=\pi$, which we estimate by

If $\boldsymbol{n}_{\mathbf{1}}$ and $\boldsymbol{n}_{\mathbf{2}}$ large, rejection rules are:

Rule of thumb: Large-sample methods are appropriate if the number of successes and number of failures in each sample is at least 5 .
(If
Example (Christmas trees). Let rural $=$ population 1, urban $=$ population 2.

Small-sample alternative: Fisher's Exact Test

- If we have two independent samples that are too small to use the \mathbf{z}-test, we can use Fisher's exact test to test $\mathrm{H}_{0}: \pi_{1}=\pi_{2}$.
$-\mathrm{H}_{\mathrm{a}}$ could be $\pi_{1}<\pi_{2}, \pi_{1}>\pi_{2}$, or $\pi_{1} \neq \pi_{2}$.
- We use \qquad probabilities to calculate the \mathbf{P}-value.
- Suppose our observed table is:

Notation here:

- The test assumes (1) $\mathrm{H}_{0}: \pi_{1}=\pi_{2}$, and (2) out of $\boldsymbol{n}_{1}+\boldsymbol{n}_{2}$ observations, we have m_{1} overall "successes".
- Given (1) and (2), our P-value is the probability of observing cell counts at least as favorable to H_{a} as the counts that we actually observed.

Example: If $\mathrm{H}_{\mathrm{a}}: \pi_{1}<\pi_{2}$, then our P -value is

- Note: Fisher's test is exact if the numbers in both of the margins of the table are truly fixed by the sampling scheme.
- This occurs in some specialized situations.
- Fisher's test is approximate if the margins are not fixed.

Example: Six forest sites are randomly sampled in each of two North Florida counties and each site is labeled "mainly pine" or "mainly non-pine".

- The data are summarized:
- Are both margins fixed here?
- We test whether the first county has a smaller true proportion of pine sites than the second county:

P-value =

R example (fisher. test function):

Note: Fisher's Exact test tends to have \qquad power for small samples.

- R also reports a CI for the "odds ratio":

Comparing two proportions: Paired Samples

- Sometimes the observations in two samples are not independent.
- We may have (1) two binary measurements on the same subject, or (2) binary measurements on subjects that are naturally paired.

Example 1: 60 couples (husbands and wives) are surveyed about their marriage.
Response: Are you satisfied in your marriage or not?
Of interest: Is the proportion of satisfied people different for husbands than for wives?

Example 2: 200 customers were given two brands (namebrand and economy) of vanilla ice cream in a random order. - Each ice cream was rated as "like" or "did not like" by each customer.

- Since the same subject was used twice, the observations are naturally paired:

Data:

Question: Is the proportion of customers who like the name brand different from the proportion who like the economy brand?

- That is, compare π_{1} to π_{2}.

$\underline{\text { McNemar's Test }}$

Denote the observed table by:

- Let $\hat{\pi}_{1}=$ proportion of "successes" in Sample 1.
- Let $\hat{\pi}_{2}=$ proportion of "successes" in Sample 2.

It can be shown (under H_{0}):

Testing $\mathrm{H}_{0}: \boldsymbol{\pi}_{1}=\boldsymbol{\pi}_{2}$:
For large \boldsymbol{n}, under \mathbf{H}_{0},
Ha_{a} Reject \mathbf{H}_{0} if:

- An approximate $(1-\alpha) 100 \%$ CI for $\pi_{1}-\pi_{2}$ is:

Rule of Thumb: These large-sample procedures are valid if:

R example (ice cream data) (the menemar. test function only does the two-sided test):
$\mathbf{9 5 \%}$ CI for $\pi_{1}-\pi_{2}$:

Note: Exact tests have been developed for this type of inference when the sample is small.

- One option is to do a sign test (recall from STAT 704) where:
T_{12} is treated as the number of "positive differences" and $T_{12}+T_{21}$ is treated as the "total number of observations".
- If \boldsymbol{T}_{12} is an "unusual" value relative to the $\operatorname{Binomial}\left(\boldsymbol{T}_{12}+\boldsymbol{T}_{21}\right.$, 0.5) distribution, this is evidence against H_{0}.

