Two-Way Tables

• The simplest two-way table is a 2×2 table, with 2 categorical variables, each with 2 categories.

• The analysis of 2×2 tables greatly depends on how the samples were taken from the population.

Inference about 2 Proportions – Two Independent Samples

• Consider taking independent samples (size n_1 and n_2) from two populations and observing <u>the same</u> binary variable for each.

Example: Survey of 160 rural households and 261 urban households, each with one Christmas tree. Observe whether their tree is natural or artificial.

 2×2 table:

Model:

Again,

Example above:

<u>Of interest</u>: Estimate $\pi_1 - \pi_2$ (with a CI) or test H₀: $\pi_1 = \pi_2$ (or possibly H₀: $\pi_1 - \pi_2 = \Delta_0$).

Again, LS (and ML) estimator of π_i (*i* = 1, 2) is:

so LS (and ML) estimator of $\pi_1 - \pi_2$ is:

And by CLT, for large samples,

Again, for large n_1 and n_2 , a 100(1 – α)% CI for $\pi_1 - \pi_2$ is:

Test statistic for a test of H₀: $\pi_1 = \pi_2$ is:

(Under H₀, $\pi_1 = \pi_2 = \pi$, which we estimate by

If n_1 and n_2 large, rejection rules are:

<u>Rule of thumb</u>: Large-sample methods are appropriate if the number of successes and number of failures <u>in each sample</u> is at least 5.

(If

Example (Christmas trees). Let rural = population 1, urban = population 2.

Small-sample alternative: Fisher's Exact Test

• If we have two independent samples that are too small to use the z-test, we can use Fisher's exact test to test H₀: $\pi_1 = \pi_2$.

• H_a could be $\pi_1 < \pi_2, \pi_1 > \pi_2$, or $\pi_1 \neq \pi_2$.

• We use ______ probabilities to calculate the P-value.

• Suppose our observed table is:

Notation here:

• The test assumes (1) H₀: $\pi_1 = \pi_2$, and (2) out of $n_1 + n_2$ observations, we have m_1 <u>overall</u> "successes".

• Given (1) and (2), our P-value is the probability of observing cell counts <u>at least as favorable</u> to H_a as the counts that we actually observed.

Example: If H_a : $\pi_1 < \pi_2$, then our P-value is

• <u>Note</u>: Fisher's test is <u>exact</u> if the numbers in both of the margins of the table are truly fixed by the sampling scheme.

• This occurs in some specialized situations.

• Fisher's test is approximate if the margins are not fixed.

Example: Six forest sites are randomly sampled in each of two North Florida counties and each site is labeled "mainly pine" or "mainly non-pine".

• The data are summarized:

• Are both margins fixed here?

• We test whether the first county has a smaller true proportion of pine sites than the second county:

P-value =

<u>**R** example</u> (fisher.test function):

<u>Note</u>: Fisher's Exact test tends to have _____ power for small samples.

• R also reports a CI for the "odds ratio":

Comparing two proportions: Paired Samples

• Sometimes the observations in two samples are <u>not</u> <u>independent</u>.

• We may have (1) two binary measurements on the same subject, or (2) binary measurements on subjects that are naturally paired.

Example 1: 60 couples (husbands and wives) are surveyed about their marriage.

<u>Response</u>: Are you satisfied in your marriage or not? <u>Of interest</u>: Is the proportion of satisfied people different for husbands than for wives?

<u>Example 2</u>: 200 customers were given two brands (namebrand and economy) of vanilla ice cream in a random order.
Each ice cream was rated as "like" or "did not like" by each customer.

• Since the same subject was used twice, the observations are naturally paired:

Data:

<u>Question</u>: Is the proportion of customers who like the name brand different from the proportion who like the economy brand?

• That is, compare π_1 to π_2 .

McNemar's Test

Denote the observed table by:

- Let $\hat{\pi}_1$ = proportion of "successes" in Sample 1.
- Let $\hat{\pi}_2$ = proportion of "successes" in Sample 2.

It can be shown (under H₀):

Testing H₀: $\pi_1 = \pi_2$: For large *n*, under H₀,

Reject H₀ if:

Ha

• An approximate $(1 - \alpha)100\%$ CI for $\pi_1 - \pi_2$ is:

<u>Rule of Thumb</u>: These large-sample procedures are valid if:

<u>R example</u> (ice cream data) (the mcnemar.test function only does the two-sided test):

95% CI for $\pi_1 - \pi_2$:

<u>Note</u>: Exact tests have been developed for this type of inference when the sample is small.

• One option is to do a sign test (recall from STAT 704) where:

 T_{12} is treated as the number of "positive differences" and $T_{12} + T_{21}$ is treated as the "total number of observations".

• If T_{12} is an "unusual" value relative to the Binomial($T_{12} + T_{21}$, 0.5) distribution, this is evidence against H₀.