
Chapter 9:  Model Building 

 

• With confirmatory observational studies, the goal is to 

determine whether (or how) the response is related to one or 

more particular (pre-specified) explanatory variables. 

 

• Exploratory observational studies are done when we have 

little previous knowledge of exactly which explanatory 

variables are related to the response. 

 

• We may have a large list of potentially useful predictor 

variables for our model. 

 

• Variable selection procedures can help us “screen out” 

unimportant predictors and build a useful model. 

 

First steps:  Often involve plots. 

• 

 

• 

 

• 

 

 

• Once a reasonable set of potential predictors is identified, 

formal model selection is begun. 

 

• If the set of predictors is large (more than 20 or so), we may 

use stepwise procedures to reduce the number of variables 

under consideration. 

 

Forward Stepwise Regression 

 

•  A procedure for adding (or deleting) one variable at a time to 

a model. 



• Suppose we have K potential predictors.  Steps: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note:  We should choose -to-enter to be somewhat smaller 

than -to-remove.  Book example: 

 

• “Forward Selection,” “Backward Elimination,” and 

“Backward Stepwise Regression” are similar procedures – see 

page 368 for details about these. 



• Once we reduce the set of potential predictors to a reasonable 

number, we can examine all possible models and choose the 

“best” model(s) based on some criterion. 

 

Possible criteria: 

(1)  Choose the model with the largest adjusted R2: 

 

 

 

 

 

 

 

 

Note:  This is equivalent to choosing the model with the 

smallest MSE. 

 

• Note that if irrelevant variables are added to the model, p 

increases and so  

 

 

 

• Thus R2
a penalizes a model that is 

 

(2) Choose the model with the smallest Akaike Information 

Criterion (AIC):  With the normal-error model, 

 

 

 

 

• The first two terms represent –2 ln L ( where L = maximized 

likelihood function) for the normal model. 

• Like R2
a, using AIC as a criterion favors models with small 

SSE, but penalizes models with too many variables (large p). 

 



(3)  Choose model with the smallest Schwarz Bayesian 

Criterion (SBC), also known as the Bayesian Information 

Criterion (BIC). 

 

 

 

• BIC is similar to AIC, but for n  8, the BIC “penalty term” 

is more severe. 

 

(4) Choose model using Mallows’ Cp: 

 

 

 

 

• Measures the bias in the regression model, relative to the 

“full” model having all the candidate predictors. 

 

• If the model is unbiased, meaning  

 

 

then  

 

Goals:  (i) Choose candidate model for which Cp is relatively 

small. (ii) Choose candidate model for which Cp  p (= the 

number of parameters in that candidate model.) 

 

• Criteria (1)-(4) may yield different “best” models.  Our goal 

is to find a model that balances 

(i) A good fit to the data 

(ii) Low bias 

(iii) Parsimony (less complexity) 

 

• All else being equal, a simpler model is often easier to 

interpret and work with. 

 



Example (Surgical Unit Data): 

 

 

 

 

 

 

 

 

Model Validation 

 

• It is often desired to check our chosen model’s predictive 

ability with “independent” data. 

• This could be done through: 

 

(1) Collecting new data (typically impractical) 

(2) Data splitting (cross-validation) 

• 

 

• 

 

• 

 

 

• We measure the predictive ability with the mean-squared 

prediction error: 

 

 

 

 

 

• MSPR should be “close” to MSE from the training-set model. 

Note: Data splitting is most useful with large data sets. 

Note: The training set should be at least as big as the validation 

set. 



(3) n-fold Cross-Validation 

• Can be used for smaller data sets. 

• For each observation i = 1, …, n, we delete the i-th 

observation.  Fit the model with the other n–1 observations, 

and use fitted model to predict the i-th response.  Let )(
ˆ

iiY  

be this predicted value. 

• Do this for all n observations, and add the squared prediction 

errors: 

Prediction Sum of Squares (PRESS) is: 

 

 

 

• If PRESS is only slightly larger than model SSE, then our 

model has good predictive ability. 

 

Example (Surgical Unit Final Model): 

 

 

 

 

 

 

 

 

 

Diagnostic Measures 

 

To check for the proper functional form for a predictor 

variable, we could use: 

 

Plots of residuals against each individual predictor: 

• A clear curved pattern may suggest the predictor should 

enter the model in a curvilinear manner. 

 



Added-variable (Partial Regression) Plots: 

• For any predictor Xj:  

 

 

 

 

What to Look For: 

• Flat Pattern with near zero slope: 

 

 

 

 

• Linear Pattern with nonzero slope: 

 

 

 

 

• Curved Pattern with nonzero slope: 

 

 

 

 

Example (Life insurance data): 

 

 

 

 

 

 

Example (Bodyfat data): 

 

 

 

 

 



Outliers and Influential Observations 

 

• Outliers are individual observations that are in some way 

separated from the bulk of the data set. 

• In regression, we may have: 

(1) Outliers in Y value 

(2) Outliers in X value(s) 

(3) Outliers in both Y and X value(s) 

 

SLR example: 

 

 

 

 

 

 

 

 

• Which point will have the most influence on the regression 

line? 

 

 

 

 

 

 

 

 

 

 

 

 

• Outliers are often easily seen with a scatterplot in SLR. 

 

• In multiple regression, we rely on complex diagnostics. 



Detecting Outliers in Y:  Studentized Residuals 

 

• The residuals, 

are measured in the same units as the response. 

 

• To obtain a unit-free residual, we divide by the standard 

error of ei: 

 

 

 

 

 

 

 

• This is called the internally studentized residual for the i-th 

observation. 

 

Rule of Thumb:  An observation with |ri| > 2.5 may be 

considered an outlier (in Y). 

 

Note:  An externally studentized residual 

 

 

 

 

 

 

involves the MSE calculated with the i-th observation deleted. 

 

• Here, a formal t-test allows us to declare an observation an 

outlier if its externally studentized residual 

 

 

 

 



Detecting Outliers in X 

 

• The diagonal elements hii of the hat matrix (also called the 

leverage values) measure how far each observation is from the 

center of the X space. 

 

Note: 

 

 

 

• If a leverage value hii is large, this means the i-th observation 

may potentially have a large influence on the fitted regression 

equation (but it is not always the case). 

 

Note: 

 

 

 

Recall: 

 

 

 

 

 

 

 

 

Rule of Thumb:  The i-th observation is a high-leverage point 

if its 

 

 

 

 

 

 



Detecting Influential Observations 

 

• An observation is influential if its exclusion (or inclusion) 

from the analysis causes major changes in the fit of the 

regression function. 

 

Picture: 

 

 

 

 

 

• We focus on two main measures of influence. 

• Both measure (for each i = 1, …, n) the difference between the 

fitted line with observation i included and the fitted line with 

observation i deleted. 

 

DFFITS: 

 

 

 

 

 

 

Cook’s Distance: 

 

 

 

 

 

 

Rules of Thumb:  The i-th observation may be influential if 

 

 

 



Note:  DFBETAS is another measure that reveals the influence 

of an observation on the estimation of each regression 

coefficient. 

 

Example 1 (Bodyfat data, 3 predictors): 

 

 

 

 

 

 

 

Example 2 (Surgical unit data, 4 predictors): 

 

 

 

 

 

 

 

• Handling outliers and influential points is quite subjective. 

• Analyst should closely examine observation(s) in question 

before excluding them from the analysis. 

• If they are truly representative of the relevant population, 

better to leave them in the data set. 

• Advanced methods (e.g., ridge regression) can reduce 

influence of unusual observations without deleting them. 

 

• A drawback of the single-deletion detection methods studied 

here:  What if a pair of points is influential?   

• These methods may not detect the points. 

 

Picture: 


