
STAT 704 --- Checking Model Assumptions  

 

• Recall we assumed the following in our model: 

 

(1) The regression relationship between the response and the 

predictor(s) specified in the model is appropriate 

(2) The errors have mean zero 

(3) The errors have constant variance 

(4) The errors are normally distributed 

(5) The errors are independent 

 

• We cannot observe the true errors 1, …, n, but we can observe 

the residuals e1, …, en. 

• Assumptions typically checked via a combination of plots and 

formal tests. 

 

Assumption (1):  Sometimes checked by a scatterplot of Y against X 

(or a scatterplot matrix of Y, X1, …, Xk). 

• We look for patterns other than that specified. 

 

• More generally, we can examine a residual plot: 

 

 

 

 

 

• Look for non-random (especially curved) pattern in residual plot, 

indicating a violation of Assumption (1). 

 

Remedies:  • Choose different functional form of model. 

• Use transformation of X variable(s). 

 

• In multiple regression, separate plots of residuals against each 

predictor can be useful for determining which X variable may need 

transforming. 



 

• A formal “lack of fit test” is available (see Section 3.7), but it 

requires replicate observations at one or more levels of the X 

variables (often not applicable when one or more predictors are 

continuous). 

 

Assumption (2):  not checked separately  residuals have mean 

zero by definition. 

 

Assumption (3):  Often the most worrisome assumption. 

 

• Violation indicated by “megaphone” or “funnel” shape in residual 

plot: 

 

 

 

 

 

 

 

 

Remedy:  Transform the Y variable: 

Use ii YY *  or )ln(* ii YY   

 

Advanced method:  Weighted Least Squares (we will see in Chapter 

11) 

 

• Formal tests for nonconstant error variance are available: 

 

Breusch-Pagan Test: Tests whether the error variance increases or 

decreases linearly with the predictor(s). 

• H0 specifies that the error variance is constant. 

• Requires large sample. 

• Assumes errors are normally distributed. 



Brown-Forsythe Test:  • Robust to non-normal errors. 

• Requires user to break data into groups and test for constancy of 

error variance across groups. 

• Not natural for data with continuous predictors. 

 

• Graphical methods have the advantage of checking for general 

violations, not just violations of a specific type. 

 

Assumption (4):  Graphical approach:  Look at normal Q-Q plot of 

residuals. 

• Violation indicated by severely curved Q-Q plot. 

 

Remedies:  • Transformations of Y and/or X. 

• Nonparametric methods. 

 

Formal test for error non-normality: 

• The Shapiro-Wilk test (implemented in R and SAS) tests for 

normality. 

 

 

 

 

• Test based on the correlation between the ordered residuals and 

their expected values when the errors are normal. 

 

Example (Studio data): 

 

 

 

Note:  With large sample sizes, the normality assumption is not 

critical. 

Note:  The formal test will not indicate the type of departure from 

normality. 

 



Assumption (5):  Typically only a concern when the data are 

gathered over time. 

• Violation indicated by a pattern in the residuals plotted against 

time. 

Remedies:  • Include a time variable as a predictor. 

• Use time series methods. 

 

Transformations of Variables (Section 3.9): 

 

• Some violations of our model assumptions may be alleviated by 

working with transformed data. 

 

• If the only problem is a nonlinear relationship between Y and the 

X’s, a transformation of one or more X’s is preferred. 

 

Possible: 

 

 

 

 

• See diagrams in Figure 3.13, p. 130. 

 

• If there is evidence of nonnormality or nonconstant error variance, 

a transformation of Y (and possibly also X) is often useful. 

 

Examples: 

 

 

 

• If the error variance is nonconstant but linear relationship is fine, 

then only transforming Y may disturb the linearity.  May need to 

transform X also. 

 

• The Box-Cox procedure provides an automatic way to determine 

the optimal transformation of the type: 



Note:  When working with transformed data, predictions and 

interpretations of regression coefficients are all in terms of the 

transformed variables. 

 

• To state conclusions in terms of the original variables, we typically 

need to do a reverse transformation. 

 

Example (surgical unit data): 

 

 

 

 

 

 

 

 

 

 

 

Extra Sums of Squares and Related F-tests 

 

• “Extra Sums of Squares” can be defined as the difference in SSE 

between a model with “a few” predictors and a model with those 

predictors, plus some others. 

 

• Recall:  As predictors are added to the model, SSE 

 

Example:  Predictors under consideration are X1, …, X8. 

 

Two possible models: 

 

 

 

 

 



• Book’s notation for this: 

 

 

 

 

 

• Why important?  We can formally test whether a certain set of 

predictors is useless, in the presence of the other predictors in the 

model. 

 

Question:  Are X2, X4, X7 needed, if the other predictors are in the 

model? 

• We want our model to have “large” SSR and “small” SSE.  (Why?) 

• If “full” model has much lower SSE than “reduced” model 

(without X2, X4, X7), then at least one of X2, X4, X7 is needed.      

 
      

 

To test 

 

 

use 

 

 

 

Reject H0 if 

 

 

Example above: 

 

• Note:  The tests for individual coefficients are examples of this type 

of test. 

Example: 

 

 



• To test about more than one (but not all) coefficients in SAS, use a 

TEST statement in PROC REG.  

 

Example (Body fat data):  Y = amount of body fat, X1 = triceps 

skinfold thickness, X2 = thigh circumference, X3 = midarm 

circumference.  Is the set of X2, X3 significantly useful if X1 is already 

in the model? 

 

 

 

 

 

 

 

 

Multicollinearity 

 

Note:  In the body fat example, the F-test for testing  

 

was                                               but individual t-tests for each of 

 

 

“Paradoxical” conclusion: 

 

 

 

 

 

Reason? 

 

 

 

 

Example:  The correlation coefficient between triceps thickness and 

thigh circumference is 



• This condition is known as multicollinearity among the predictors. 

 

• With uncorrelated predictors, the model can show us the 

individual effect of each predictor on the response. 

 

• When predictors are correlated, it is difficult to separate the effects 

of each predictor. 

 

Effects of Multicollinearity 

(1) The model may still provide a good fit and precise prediction of 

the response and estimation of the mean response. 

(2) Estimated regression coefficients (b1, b2, …) will have large 

variances – leads to the conclusion that individual predictors are not 

significant although overall F-test may be highly significant. 

(3) Concept of “holding all other X variables constant” doesn’t make 

sense in practice. 

(4) Signs of estimated regression coefficients may seem “opposite” of 

intuition. 

 

Detecting Multicollinearity 

• For each predictor, say Xj, its Variance Inflation Factor (VIF) is: 

 

 

 

 

 

 

 

 

 

 

 

For any predictor Xj 

 

 



Remedies for Multicollinearity 

 

(1) Drop one or more predictors from model. 

(2) More advanced methods:   

 

 

 

 

 

 

 

(3) More advanced: 

 

 

 

Polynomial Regression 

 

• Used when the relationship between Y and the predictor(s) is 

curvilinear. 

 

Example:  Quadratic Regression (one predictor): 

 

 

 

 

• Note:  Usually in polynomial regression, all predictors are first 

centered by subtracting the sample mean (of the predictor values) 

from each X-value.  This reduces  

 

 

 

• Another option:  Use “orthogonal polynomials” which are 

uncorrelated.  

 

 



Example:  Cubic Regression (one predictor): 

 

 

 

 

• Polynomials of higher order than cubic should rarely be used.  

 

• High-order polynomials may be excessively “wiggly” and erratic 

for both interpolations and extrapolations. 

 

Example: 

 

 

 

 

 

 

 

 

 

 

Polynomial Regression, More than One Predictor 

 

• In the case of multiple predictors, all cross-product terms must be 

included in the model. 

 

Example:  Quadratic Regression (two predictors): 

 

 

 

 

 

 

 

 



Notes:  (1) These models are all cases of the “general linear model” 

so we can fit them with least squares as usual. 

(2) A model containing a particular term should also contain all 

terms of lower order: 

 

 

 

(3) Extrapolation is particularly dangerous with polynomial models. 

 

Examples: 

 

 

 

 

 

 

 

(4)  A common approach is to fit a high-order model and then test 

(with t-test or F-test) whether a lower-order model is sufficient. 

 

Example: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Interaction Models 

 

• An interaction model is one that includes one or several cross-

product terms. 

 

Example (two predictors): 

 

 

 

• Question:  What is the change in mean response for a one-unit 

increase in X1 (holding X2 fixed)? 

 

Example:   

 

 

 

 

 

 

 

 

 

 

 

 

• The marginal effect of X1 on the mean response  

 

 

 

 

• We may see this phenomenon graphically through interaction 

plots. 

 

 

 



Example: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notes:  Including interaction terms may lead to multicollinearity 

problems.  Possible remedy: 

 

• Including all pairwise cross-product terms can complicate a model 

greatly. 

• We should test whether interactions are significant. 

 

Graphical Check: 

• Fit model with no interaction.   

• Plot residuals from this model against each potential interaction 

term separately. 

• If plot shows random scatter, that interaction term is probably not 

needed. 

 

Formal F-test: 

 

 

 

 


