STAT 704 --- Chapter 6: Multiple Regression

• We now consider the situation when several predictors have a linear relationship with the response.

Example: (Two predictors, *X*₁ and *X*₂)

If $E(\varepsilon_i) = 0$, then

• This "response surface" is actually a _____ as a function of *X*₁ and *X*₂, not a

• Generally, for k (= p - 1) predictors $X_1, ..., X_k$, our model is

where if $E(\varepsilon_i) = 0$,

Interpretations of regression coefficients:

• Again we assume ε_i (i = 1, ..., n) are independent N(0, σ^2) random variables.

Example (Sec. 6.9) (Portrait Studio company analyzing sales based on data from 21 cities): Y = sales (in thousands of dollars) for a city $X_1 =$ number of people (in thousands) age 16 or younger $X_2 =$ per capita disposable income (in thousands of dollars) of city

• Assuming a linear model is appropriate (should check/verify with data):

Here, does β_0 have a reasonable interpretation?

 β_2 is

Situations that the General Linear Model Encompasses

<u>Qualitative Predictors</u>: Example: $Y = \text{length of hospital stay}, X_1 = age of patient, <math>X_2 = \text{gender of patient}$ ($X_2 = 1$ for females, $X_2 = 0$ for males).

Note

<u>Polynomial regression</u>: Often appropriate to model a curvilinear relationship between response and predictor(s):

Transformed Variables: $\ln(Y_i) = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \beta_3 X_{i3} + \varepsilon_i$

Interaction Effects: $Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \beta_3 X_{i1} X_{i2} + \varepsilon_i$

Key: All these models are

Example of nonlinear model:

General Linear Model in Matrix Terms

Let

Then the general linear model can be written in matrix notation as:

Our assumptions about the random error vector $\underline{\varepsilon}$ are:

• Looks complicated, but it makes writing formulas for our least-squares estimates simple.

<u>Fitting the MLR Model</u> (Estimating β_0 , β_1 , β_2 , ..., β_k): Recall least squares method: Choose estimates of β_0 , β_1 , β_2 , ..., β_k to minimize:

Vector calculus can show that the least-squares estimates are

• This will generally be found using a computer package.

• We can also write the <u>fitted values</u> and the <u>residuals</u> for all observations as vectors:

• Note that in our matrix notation,

Example: (Portrait Studio Data)

- So fitted regression equation is:
- Interpretation of *b*₁:

• Interpretation of *b*₂:

Analysis of Variance

• Again, in multiple regression, we can decompose the total sum of squares into SSR and SSE.

• Formulas for SSTO, SSR, SSE given in book.

Degrees of Freedom

- Still n 1 d.f. for SSTO
- Now, SSE has

Leaves

ANOVA Table (Multiple Regression)

(Global) F-test for a Regression Relationship

• In multiple regression, our F-test based on tests whether the <u>entire set</u> of predictors $X_1, ..., X_k$ explains a significant amount of the variation in *Y*.

• If MSR \approx MSE,

• If MSR >> MSE,

• Formally, we test:

If we reject H_0 and conclude there is some regression relationship between *Y* and the predictors.

• The coefficient of multiple determination

measures the proportion of sample variation in Y explained by its linear relationship with the <u>entire set</u> of predictors $X_1, ..., X_k$.

- Again, $0 \le R^2 \le \overline{1}$.
- If we keep adding more predictors to our model, R^2 can only
- An adjusted R^2

accounts for the number of predictors in the model.

• It may decrease when we add useless predictors to the model.

Note: R^{2}_{a} is not always between 0 and 1.

Inferences about Individual Regression Parameters

• The F-test concerns the <u>entire set</u> of predictors.

• If the F-test is "significant" (if we reject H₀), we may want to determine <u>which</u> of the individual predictors contribute significantly to the model.

Expected Values and Variances of Vectors

• If $\underline{\mathbf{Y}}$ is a vector, then

• If $\underline{\mathbf{Y}}$ is a vector, then

Examples in MLR model:

• Note: If A is a constant matrix and $\underline{\mathbf{Y}}$ is a random vector, then:

• So for the j-th estimated coefficient b_j in our model:

• Then a $100(1 - \alpha)\%$ CI for β_j is

• To test whether X_j is a "significant predictor" in the presence of the other predictors in the model, we test:

using the test statistic

We reject H₀ if

<u>Note</u>: The results of the tests about individual coefficients depend on <u>which other predictors</u> are in the model.

• They therefore determine whether X_j has a significant <u>marginal</u> effect on the response, given that the other predictors are in the model (i.e., above and beyond the effect of the other predictors).

• Each t-test has the correct significance level, assuming it is the only t-test about a coefficient being done.

• If, in an exploratory model, we conduct multiple t-tests about several coefficients, then P[at least one Type I error] will be greater than the nominal α of each test, unless we adjust for multiple tests.

<u>Simplest way</u>: Bonferroni method:

More powerful way: Holm method:

Example (Studio data):

CI for Mean Response and PI for Individual Response in MLR

• We may construct a CI for the mean response corresponding to a <u>set</u> of values of the predictor variables: $X_{hi}, ..., X_{hk}$.

Define

- We wish to estimate
- A point estimator is
- This estimator has expected value

and variance

• Therefore a $100(1 - \alpha)\%$ CI for $E(Y_h)$ is

• The $100(1 - \alpha)\%$ prediction interval for a new response $Y_{h(new)}$ corresponding to \underline{X}_h is

• In practice, we use software to find these intervals.

Example 1 (Studio data): We wish to estimate, with a 95% CI, the mean sales in cities with 65.4 thousand people aged 16 or younger and per capita disposable income of 17.6 thousand dollars.

Example 2 (Studio data): We wish to predict, with a 95% PI, the sales for a new city with 65.4 thousand people aged 16 or younger and per capita disposable income of 17.6 thousand dollars.