STAT 704 --- Chapter 6: Multiple Regression

- We now consider the situation when several predictors have a linear relationship with the response.

Example: (Two predictors, X_{1} and X_{2})

If $E\left(\varepsilon_{i}\right)=0$, then

- This "response surface" is actually a \qquad as a function of X_{1} and X_{2}, not a
- Generally, for $k(=p-1)$ predictors X_{1}, \ldots, X_{k}, our model is
where if $\mathrm{E}\left(\varepsilon_{i}\right)=0$,

Interpretations of regression coefficients:

- Again we assume $\varepsilon_{i}(i=1, \ldots, n)$ are independent $N\left(0, \sigma^{2}\right)$ random variables.

Example (Sec. 6.9) (Portrait Studio company analyzing sales based on data from 21 cities):
$Y=$ sales (in thousands of dollars) for a city
$X_{1}=$ number of people (in thousands) age 16 or younger
$X_{2}=$ per capita disposable income (in thousands of dollars) of city

- Assuming a linear model is appropriate (should check/verify with data):

Here, does $\boldsymbol{\beta}_{0}$ have a reasonable interpretation?
β_{2} is

Situations that the General Linear Model Encompasses
Qualitative Predictors: Example: $Y=$ length of hospital stay, $X_{1}=$ age of patient, $X_{2}=$ gender of patient $\left(X_{2}=1\right.$ for females, $X_{2}=0$ for males).

Note

Polynomial regression: Often appropriate to model a curvilinear relationship between response and predictor(s):

Transformed Variables:

$\ln \left(Y_{i}\right)=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\beta_{3} X_{i 3}+\varepsilon_{i}$

Interaction Effects:

$Y_{i}=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\beta_{3} X_{i 1} X_{i 2}+\varepsilon_{i}$

Key: All these models are

Example of nonlinear model:

General Linear Model in Matrix Terms

Let

Then the general linear model can be written in matrix notation as:

Our assumptions about the random error vector $\underline{\varepsilon}$ are:

- Looks complicated, but it makes writing formulas for our leastsquares estimates simple.

Fitting the MLR Model (Estimating $\beta_{0}, \beta_{1}, \beta_{2}, \ldots, \beta_{k}$): Recall least squares method: Choose estimates of $\beta_{0}, \beta_{1}, \beta_{2}, \ldots, \beta_{\mathrm{k}}$ to minimize:

Vector calculus can show that the least-squares estimates are

- This will generally be found using a computer package.
- We can also write the fitted values and the residuals for all observations as vectors:
- Note that in our matrix notation,

Example: (Portrait Studio Data)

- So fitted regression equation is:
- Interpretation of $\boldsymbol{b}_{\mathbf{1}}$:
- Interpretation of $\boldsymbol{b}_{\mathbf{2}}$:

Analysis of Variance

- Again, in multiple regression, we can decompose the total sum of squares into SSR and SSE.
- Formulas for SSTO, SSR, SSE given in book.

Degrees of Freedom

- Still $n-1$ d.f. for SSTO
- Now, SSE has

Leaves

ANOVA Table (Multiple Regression)

(Global) F-test for a Regression Relationship

- In multiple regression, our F-test based on
tests whether the entire set of predictors $X_{1}, \ldots, X_{\mathrm{k}}$ explains a significant amount of the variation in Y.
- If MSR \approx MSE,
- If MSR >> MSE,
- Formally, we test:

If

 we reject H_{0} and conclude there is some regression relationship between Y and the predictors.- The coefficient of multiple determination
measures the proportion of sample variation in Y explained by its linear relationship with the entire set of predictors $X_{1}, \ldots, X_{\mathrm{k}}$. - Again, $0 \leq R^{2} \leq 1$.
- If we keep adding more predictors to our model, \boldsymbol{R}^{2} can only
- An adjusted \boldsymbol{R}^{2}
accounts for the number of predictors in the model.
- It may decrease when we add useless predictors to the model.

Note: R^{2} is not always between 0 and 1.

Inferences about Individual Regression Parameters

- The F-test concerns the entire set of predictors.
- If the F-test is "significant" (if we reject H_{0}), we may want to determine which of the individual predictors contribute significantly to the model.

Expected Values and Variances of Vectors

- If \underline{Y} is a vector, then
- If \underline{Y} is a vector, then

Examples in MLR model:

- Note: If \mathbf{A} is a constant matrix and \underline{Y} is a random vector, then:
- So for the \mathbf{j}-th estimated coefficient $\boldsymbol{b}_{\mathbf{j}}$ in our model:
- Then a $100(1-\alpha) \%$ CI for β_{j} is
- To test whether X_{j} is a "significant predictor" in the presence of the other predictors in the model, we test:
using the test statistic

We reject H_{0} if

Note: The results of the tests about individual coefficients depend on which other predictors are in the model.

- They therefore determine whether X_{j} has a significant marginal effect on the response, given that the other predictors are in the model (i.e., above and beyond the effect of the other predictors).
- Each t-test has the correct significance level, assuming it is the only t-test about a coefficient being done.
- If, in an exploratory model, we conduct multiple t-tests about several coefficients, then P[at least one Type I error] will be greater than the nominal α of each test, unless we adjust for multiple tests.

Simplest way: Bonferroni method:

More powerful way: Holm method:

Example (Studio data):

- We may construct a CI for the mean response corresponding to a set of values of the predictor variables: $X_{\mathrm{h}}, \ldots, X_{\mathrm{hk}}$.

Define

- We wish to estimate
- A point estimator is
- This estimator has expected value
and variance
- Therefore a $100(1-\alpha) \%$ CI for $\mathrm{E}\left(Y_{h}\right)$ is
- The $\mathbf{1 0 0 (1 - \alpha) \%}$ prediction interval for a new response $Y_{h(n e w)}$ corresponding to \underline{X}_{h} is
- In practice, we use software to find these intervals.

Example 1 (Studio data): We wish to estimate, with a 95\% CI, the mean sales in cities with 65.4 thousand people aged 16 or younger and per capita disposable income of $\mathbf{1 7 . 6}$ thousand dollars.

Example 2 (Studio data): We wish to predict, with a 95\% PI, the sales for a new city with 65.4 thousand people aged 16 or younger and per capita disposable income of $\mathbf{1 7 . 6}$ thousand dollars.

