STAT 704 --- Chapter 2: Inference in Regression

Inference about the slope β_1 :

• It can be shown that the sampling distribution of b_1 is

Proof:

• So

but σ^2 is unknown, so we estimate it with

Then

Hence, a $(1 - \alpha)100\%$ CI for β_1 is:

Note that testing H₀: $\beta_1 = 0$ is often important in SLR. • Under the SLR model $Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$, if $\beta_1 = 0$, then

• In that case, X is

To test H_0 : $\beta_1 = 0$ at significance level α , we use the test statistic:

Rejection rule and P-value depend on the alternative hypothesis:

- What if we want to test a nonzero value of β_1 , e.g., H_0 : $\beta_1 = 3$?
- Typically we find these CIs and t* and P-values using SAS or R.

Example (Toluca refrigeration company): X = Lot Size (to produce a certain part) Y = Work Hours (needed to produce a certain part)

Interval Estimation of E(*Y*_h)

• We often wish to estimate the mean *Y*-value at a particular *X*-value, say *X*_h.

• We know a point estimate for this mean $E(Y_h)$ is simply

• This estimate has variability depending on which sample we obtain. (Why?)

• To account for the variability, we develop a CI for $E(Y_h)$.

<u>Note</u>: \hat{Y}_h is a so \hat{Y}_h has a

• So estimating σ^2 with MSE and using earlier principles, a $(1 - \alpha)100\%$ CI for $E(Y_h)$ is:

• Note this CI is narrowest when

and gets wider

Prediction Interval for Y-value of a New Observation

• Suppose we have a new data point with $X = X_h$.

• We wish to predict the *Y*-value for this observation.

• Point prediction is

• What about a prediction interval?

• There are <u>two</u> sources of sampling variability for this <u>predicted</u> *Y*: (1)

(2)

- Our CI for $E(Y_h)$ only involved the <u>first</u> source.
- Our Prediction Interval for *Y*_{h(new)} will be _____
- Variance of the prediction error is:

Estimating σ^2 with MSE, our $(1 - \alpha)100\%$ PI for $Y_{h(new)}$ is:

Example (Toluca data):

• With a 90% CI, estimate the mean number of work hours for lots of size 65 units.

• With a 90% PI, predict the number of work hours for a new lot having size 65 units.

Note: Working and Hotelling developed $100(1 - \alpha)\%$ <u>confidence</u> <u>bands</u> for the entire regression line. (see Sec. 2.6 for details)

Picture:

Analysis of Variance Approach to Regression

• Our regression line is a way to use the predictor (*X*) to explain how the response (*Y*) varies.

• This can be represented mathematically by <u>partitioning</u> the <u>total</u> <u>sum of squares (SSTO)</u>.

SSTO = $\sum (Y_i - \overline{Y})^2$ is a measure of the total (sample) variation in the *Y* variable. • Note SSTO =

Picture:

• When we account for X,

we would use

SSE = $\sum (Y_i - \hat{Y}_i)^2$ is a measure of how much *Y* varies <u>around the</u> regression line.

SSR =

SSR measures how much of the variability in *Y* is explained by the regression line (by *Y*'s linear relationship with *X*).

• Thus SSE measures

Degrees of freedom:

• To directly compare "explained variation" to "unexplained variation," we must divide by the proper d.f. to obtain the corresponding <u>mean square</u>:

If MSR >> MSE, then the regression line explains a lot of the variation in *Y*, and we say the regression line fits the data well.

Summary: ANOVA Table

• Note the expected Mean Squares: MSR is expected to be large than MSE if and only if

• So testing whether the SLR model explains a significant amount of the variation in *Y* is equivalent to testing

 \bullet Consider the ratio MSR / MSE. If H_0 is true, we expect this to be near

• If H₀ is true, this ratio has

Leads us to

Test statistic

RR:

• Note that $F^* = (t^*)^2$ and that this F-test (in SLR) is equivalent to the t-test of H₀: $\beta_1 = 0$ vs. H_a: $\beta_1 \neq 0$.

Example:

 \rightarrow

General Linear Test

- Note if H_0 : $\beta_1 = 0$ holds, our "<u>reduced model</u>" is
- It can be shown that the least-squares estimate of β_0 here is
- Thus SSE for the reduced model is

• Note that the SSE(R) can never be less than the SSE for the full model, SSE(F).

• Including a predictor can never cause the model to explain <u>less</u> <u>variation</u> in *Y*.

• If SSE(R) is only a little more than SSE(F), then the predictor is

• We can generally test this with an F-test:

• This principle of comparing SSE(R) and SSE(F) based on "reduced" and "full" models will be used often in more advanced regression models.

R^2 and r

• The coefficient of determination is the <u>proportion</u> of total sample variation in *Y* that is explained by its linear relationship with *X*.

• The closer R^2 is to 1, the

Correlation coefficient *r* =

• Note

Values of *r* near $0 \rightarrow$

Values of *r* near $1 \rightarrow$

Values of *r* near $-1 \rightarrow$

Cautions about R² and r:
R² could be high, but predictions may not be precise.
R² could be high, but the linear regression model may not be the

best fit

• R^2 and r could be near 0, but X and Y could still be related

• R^2 can be inflated when sample X values are widely spaced

Example (Toluca data):

Correlation Models

• In regression models:

• If we simply have two continuous variables *X* and *Y* without natural response/predictor roles, a correlation model may be appropriate.

• Convenience store example:

• If appropriate, we could assume *X* and *Y* have a bivariate normal distribution.

• Five parameters:

- Investigation of the linear association between *X* and *Y* is done through inferences on ρ_{XY} .
- *r* is a point estimate of ρ_{XY} .
- Testing H_0 : $\rho_{XY} = 0$ is equivalent to
- A CI for ρ_{XY} requires Fisher's z-transformation:

For large samples, a $(1 - \alpha)100\%$ CI for

 \bullet Then use Table B.8 in book to back-transform endpoints to get CI for $\rho_{XY}.$

Example:

Cautions about Regression

• When predicting future values, the conditions affecting *Y* and *X* should remain similar for the prediction to be trustworthy.

• Beware of extrapolation (predicting *Y* for values of *X* outside the range of *X* in the data set). The relationship observed between *Y* and *X* may not hold for such *X* values.

• Concluding that *Y* and *X* are linearly related (that $\beta_1 \neq 0$) does not imply a <u>causal</u> relationship between *X* and *Y*.

• Beware of making multiple predictions or inferences simultaneously – generally the Type I error rate is affected.

• The least-squares estimates are <u>not unbiased</u> if *X* is measured with error.

• This is when the *X* values we observe in our data are not the true predictor values for those observations.

- In this case, the estimated coefficients are biased toward zero.
- Advanced techniques are needed to deal with this issue.