
Power Calculation for F-test 

 

• If the population means 1, 2, …, r differ, we would like our 

F-test to reject H0 with high probability. 

 

Power =  

 

• For any fixed , the power of a test _______________ as the 

sample size increases. 

 

• For any fixed , the power of the F-test is ______________ 

when the 1, 2, …, r are more spread out. 

 

• The distribution of F* under Ha is a ____________________ 

 

 

 

• In experiments, we often wish to determine the minimum 

sample size needed to have a specified power to detect certain 

differences among the population means. 

 

Example:  It may be important to reject H0 when the largest 

and smallest i differ by at least 

 

 

Example:  Y = Time until headache relief (in minutes),  

r = 4 different drugs 

 

• Suppose the company wishes to detect when the mean times 

for the 4 drugs differ by at least 10 minutes with probability 

0.80, using  = 0.05. 

 

• We also must specify (or at least guess) the value of .  

Suppose 



Then  

 

 

Table B.12 (pg. 1342-1343) tells us we need  

 

 

• The R function power.anova.test does similar calculations, 

but not in terms of . 

 

Investigating Differences Among Treatment Means 

 

• If the F-test is not significant, we conclude the true mean 

response is (or may be) the same for all factor levels and no 

further investigation is needed. 

 

• If we conclude a difference in treatment means, we 

investigate further. 

 

Plots:  We can plot the sample means for each level using a bar 

graph (good with a qualitative factor) or a main effects plot 

(good with a quantitative factor). 

• See SAS and R examples. 

 

Inference About the Population Treatment Means 

 

• Consider a CI for i, the true mean response at level i: 

 

Point estimate of i is          and  

 

 

Using MSE to estimate 2, 

 

 

 



→ 100(1 – )% CI for i is: 

 

 

 

 

• SAS gives these using the CL option to the LSMEANS 

statement. 

 

Example:  95% CI for the mean sales for package design 1 is: 

 

 

Comparing Two Population Treatment Means 

 

Estimating the Difference between i and i' : 

 

Point estimate is 

 

 

 

 

So a 100(1 – )% CI for i – i' is: 

 

 

 

• We also may test whether two particular treatment means 

are equal: 

 

 

 

• This is done with a  

 

• If we use the PDIFF option to the LSMEANS statement, SAS 

gives CIs for the difference between each pair of treatment 

means and the p-value for each test comparing two treatment 

means. 



Note:  These results are only valid if we are doing inference 

about one particular pair of treatment means.  If we are doing 

many simultaneous comparisons, we must use different 

techniques. 

 

SAS example:  95% CI for the difference between mean sales 

for package design 3 and mean sales for package design 4: 

 

 

 

 

 

 

Contrasts 

• A contrast is a linear combination of factor level means in 

which the coefficients sum to zero. 

• Often useful for comparing several treatment means. 

 

Previous example: 

 

 

• In Kenton Foods data, package designs 1 and 3 used 

cartoons; designs 2 and 4 did not.  To compare mean sales for 

the “cartoon designs” vs. the “non-cartoon designs”, we could 

use the contrast: 

 

 

 

 

• An unbiased estimator of a contrast L is 

 

 

 

 

 



→ Using t procedures we can obtain a 100(1 – )% CI for L or 

perform a t-test of 

 

• SAS will do this with an ESTIMATE statement. 

 

Previous example:  95% CI for difference in mean sales for the 

cartoon designs and mean sales of non-cartoon designs is: 

 

 

 

Interpretation: 

 

 

 

 

• Testing whether cartoon designs and non-cartoon designs 

have significantly different mean sales: 

 

 

 

 

 

 

 

• Suppose we had wanted to test whether the non-cartoon 

designs had produced significantly better mean sales than the 

cartoon designs: 

 

 

 

 

 

 

 

 



Simultaneous Inference 

 

• Suppose we make 3 simultaneous comparisons, say: 

 

 

 

 

 

• If we do three separate t-tests, each with  = 0.05, then: 

 

If H0 is true in each case:  The probability that we reject H0 

and incorrectly conclude Ha in at least one test is: 

 

 

 

 

 

 

• So the family of tests has significance level 

 

 

• Another concern:  We must avoid “data snooping” – testing 

only those comparisons that are suggested by the data.  This 

can wildly inflate the actual significance level! 

 

• If we look at the data initially and then use that “early look” 

to decide which tests to perform, we are implicitly making 

comparisons. 

• Solution:  Use methods designed to make many 

inferences/comparisons simultaneously. 

• These procedures are designed so that the family significance 

level is  

 

→ 

 



• The family significance level is also known as the  

 

 

• This is as opposed to the  

which is 

 

 

Tukey’s Multiple Comparison Procedure 

 

• This compares all possible pairs of treatment means 

simultaneously: 

 

• Tukey simultaneous CIs for all differences i – i' : 

 

 

where 

 

 

 

• We have confidence (1 – )100% that the entire set of these 

CIs contain the true pairwise differences between treatment 

means that they purport to contain. 

 

Simultaneous Testing 

 

We can test 

 

 

 

• The Tukey procedure declares i and i' significantly 

different if 

 

 

 

 



• Results of the Tukey procedure may be found in SAS. 

 

Example (Kenton data):  SAS output reveals CIs for all 

pairwise treatment mean differences, with family confidence 

coefficient 90%: 

 

 

 

 

 

Testing: We can compare all pairs of treatment means, with 

family significance level  = 0.10.  SAS output shows: 

 

 

 

 

 

 

 

Other Multiple Comparison Procedures 

 

• The Scheffé procedure is designed for CIs for (and tests 

about) all possible contrasts. 

• The family confidence level (significance level) is at least 1 –  

(at most ). 

• Note that this class of inferences includes all possible pairwise 

comparisons, plus many more inferences. 

• If only pairwise comparisons are needed, then Tukey’s 

procedure is preferable. 

 

• The Bonferroni procedure is good for testing about a few 

contrasts (must be specified before looking at the data or 

results – no data snooping allowed!) 

 



• For each of g contrasts, L1, …, Lg, the Bonferroni intervals 

are  

 

 

 

 

 

 

For testing 

 

against the two-sided alternatives, for each H0, we reject if 

 

 

 

where t* is the estimated contrast divided by its standard 

error. 

 

• The Bonferroni method is based on the Bonferroni inequality. 

Let Ai indicate that the i-th CI does not contain its parameter 

(or the i-th test has a Type I error): 

 

 

 

 

 

• When testing about several contrasts, it is most useful to test 

orthogonal contrasts.  Two contrasts 

 

 

 

 

• Orthogonality implies that one contrast conveys no 

information about the other (i.e., no “overlapping 

information). 

Example: 



• When doing all pairwise comparisons of treatment means, the 

Tukey method is more efficient than Bonferroni.  If only a few 

comparisons are of interest, the Bonferroni method may be 

better. 

• When all (or very many) contrasts are of interest, the Scheffé 

procedure is best.  When a few contrasts are of interest, 

Bonferroni may be better. 

• Data snooping should not be used with the Bonferroni 

procedure, but data snooping is OK when Tukey or Scheffé is 

used, because these procedures intrinsically involve all possible 

inferences of a certain type anyway. 

 

Other procedures:  Dunnett’s procedure is designed to 

compare several treatments to a “control” group 

simultaneously. 

Example (Drug study): 

 

 

Hsu’s procedure:  Selects “best” treatment and compares all 

others to the “best”. 

 

Checking Model Assumptions in ANOVA 

• This is again done through an analysis of the  

 

 

• We may check for outliers by examining the (internally) 

studentized residuals, which for the ANOVA model are: 

 

 

 

 

Rule of Thumb: 

 

• A formal t-test based on the externally studentized residuals 

is also available; see pg. 780 for details. 



Graphical Tools: (1) Plots of Residuals vs. Fitted Values 

Can check: 

 

 

 

 

 

 

(2) Normal Q-Q plots of residuals 

• Could do separate Q-Q plots for each factor level, if the 

sample sizes are quite large. 

• Or could do a single Q-Q plot of all residuals (as long as error 

variances are judged roughly equal). 

• Shapiro-Wilk test on the residuals can formally test for non-

normality. 

 

(3) If the data are gathered over time, we may plot the 

residuals against a time index (separately for each factor level) 

to check for dependence of errors across time. 

 

• The equal variance assumption can be tested formally with 

the Brown-Forsythe test in SAS or R: 

 

 

 

 

• The B-F test is based on doing the familiar F-test on the  

 

 

 

• If the F-statistic is large and H0 is rejected, then the variances 

are deemed unequal across populations. 

 

 

 



SAS example (Kenton Foods data): 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Common Remedies for Unequal Error Variances and/or  

Non-normal Errors 

 

(1) Use weighted least squares and fit the ANOVA model with 

the regression approach. 

 

(2) Transform the Response Variable: 

Examples: 

 

 

 

 

 

 

(3) Use a nonparametric alternative to the F-test called the 

Kruskal-Wallis test, which is based on the ranks of the data. 

 

 


