Chapter 16 (continued): <u>Analysis of Variance</u>

<u>Note</u>: In a single-factor study, the <u>levels</u> are also known as <u>treatments</u>.

Partitioning the Total Sum of Squares

SSTO =

SSTR =

SSTR measures the variability

SSE =

SSE measures the variability

• SSE estimates the "natural" variation in the data (variation not due to the different treatments).

• If the treatment means differ greatly, then SSTR will be

Note that SSTO = SSTR + SSE.

Proof:

• The associated degrees of freedom are also additive, and are used to obtain the <u>mean squares</u>.

Expected Values of the Mean Squares (see pg. 696-698 for details):

Note: • MSE is an unbiased estimator of the error variance σ^2 . • If all treatments have the <u>same</u> population mean, then E(MSTR) =

• If the treatments have different population means, then MSTR should be ______ than MSE, on average.

<u>F-test for Equality of Treatment Population Means</u></u>

- A natural test statistic to use is:
- If $F^* >> 1 \rightarrow$ evidence supports
 - If F^* near $1 \rightarrow$ evidence supports
- Under H₀, F* has a
- We reject H₀ if

<u>Theoretical Justification of F-test</u> (Proof of distribution of F* under H₀)

• We need to use Cochran's Theorem:

Suppose our observations $Y_1, ..., Y_n \sim N(\mu, \sigma^2)$. Then if we break SSTO into *k* sums of squares SS₁, ..., SS_k (having degrees of freedom (df₁, ..., df_k), then for *j* = 1, ..., *k*,

random variables, provided that

ANOVA situation:

• We have *n*_T observations. Under H₀, they are

ANOVA Table

Kenton Food Example (from SAS):

• Do the four package designs have the same population mean sales?

We test:

Factor Effects Model

• This is an alternative formulation of the ANOVA model.

• If μ_{\bullet} is a type of overall population mean response, then let

• τ_i is the effect of the *i*-th factor level, or the *i*-th treatment effect.

• μ_{\bullet} is often the simple average of $\mu_1, \mu_2, ..., \mu_r$, but it could be defined as a weighted average of $\mu_1, \mu_2, ..., \mu_r$.

• Note our model equation is:

• Our hypothesis of H_0 : $\mu_1 = \mu_2 = ... = \mu_r$ is equivalent to

• If μ_{\bullet} is an "overall mean response" then $\tau_1, ..., \tau_r$ measure how much the treatment means deviate from the overall mean, and

• We can use a regression approach to estimate the parameters of this model.

Regression Approach to the ANOVA Model

• Since $\tau_r = -\tau_1 - \tau_2 - \dots - \tau_{r-1}$, we need not estimate τ_r . We only estimate $\mu_{\bullet}, \tau_1, \tau_2, \dots, \tau_{r-1}$.

• Recall example when r = 3 and $n_1 = 1$, $n_2 = 3$, $n_3 = 2$. Then let:

• Then the factor-effects model can be stated as

For example:

• If we use the indicator variables

then this will produce the X matrix above, and we can fit the factor-effects ANOVA model via regression.

SAS Example (Kenton Foods, Table 16.1):

• To fit the cell-means model via regression, we should let

• Thus we can define indicator variables

which will produce the above X matrix.

• We can fit the cell-means model via regression (specifying NO intercept term in this case!).

Kenton Foods Example: