STAT 518 --- Section 4.7 --- Loglinear Models and Other Approaches

- Many tests for contingency tables use the "Pearson's Chi-square Statistic":
- An alternative approach uses the "Likelihood Ratio Chi-square Statistic":
- The LR statistic also has an asymptotic χ^{2} distribution, with the same degrees of freedom as Pearson's statistic.
- An advantage of the Pearson test statistic is that its asymptotic χ^{2} distribution tends to be valid with smaller sample sizes (i.e., when \qquad) than the χ^{2} approximation for the LR statistic (which holds well when \qquad).

Loglinear Models

- This is a common method of analyzing contingency tables of more than two dimensions.
- In a 2×2 table, the null hypothesis of independence between dimensions is equivalent to
where $p_{i+}=$
and $p_{+\mathrm{j}}=$
- Taking logarithms of both sides, we get:
which is a \qquad model.

Recall: Our expected cell count under independence is
where $\boldsymbol{n}_{\text {i+ }}=$
and $\boldsymbol{n}_{+\mathrm{j}}=$

- Thus for a 2×2 table, and so we have
- This fraction
is called the odds ratio.
It is defined as
- Now, if we instead have dependence between dimensions, that implies:
- Writing the loglinear model in terms of the cell counts rather than cell probabilities, we have:

under independence

under dependence

- These model parameters are estimated using software via iterative methods.
- Using the estimates, we can get fitted values for each cell.
- We then use either the Pearson statistic or the LR statistic to determine (with a χ^{2} test) whether the model provides a good fit. \mathbf{H}_{0} :

Three-Way Tables

- This is most useful in cases where the data are classified according to three categorical variables.

Example 1 ($\mathbf{2 \times 2 \times 2}$ table):

Possible loglinear models for $\mathbf{2 \times 2 \times 2}$ tables:

Example 1: Let $i=1,2$ be the level of Cigarette Use (Yes/No); let $j=1,2$ be the level of Marijuana Use; let k $=1,2$ be the level of Alcohol Use.

- The model that includes all possible parameters is called the \qquad model.
- The loglm function in the MASS library in \mathbf{R} estimates the parameters of any of these models, calculates the fitted values, and performs the χ^{2} tests for fit.
- In addition, the step function evaluates these possible models based on Akaike's Information Criterion (AIC).

Example 1 Possible Questions of Interest:

- Do the odds of a cigarette smoker using marijuana differ from the odds of a cigarette non-smoker using marijuana? \rightarrow
- Does the value of this odds ratio depend on alcohol use? \rightarrow

Analysis in R:

- The best model appears to be
- Example of fitted value calculation using estimated coefficients:
- Interpretation of results is best done using odds ratios:

Example 2 Possible Questions of Interest:

- Do the odds of an early plant surviving differ from the odds of a late plant surviving? \rightarrow
- Does the value of this odds ratio depend on the cutting length? \rightarrow

Analysis in R:

- The search for the best model:
- Interpretation of results via odds ratios:

Example 3 ($2 \times 2 \times 4$ table): After the sinking of the Titanic, a study classified passengers according to Survival Status (Yes/No), Sex (Male/Female), and Class ($1^{\text {st }} / 2^{\text {nd }} / 3^{\text {rd }} /$ Crew). We adapt a built-in R data set.

Example 3 Possible Questions of Interest:

- Do the odds of a female surviving differ from the odds of a male surviving? \rightarrow
- Does the value of this odds ratio depend on the class of the passenger? \rightarrow

Analysis in R:

- The search for the best model:
- Interpretation of results via odds ratios:

