STAT 518 --- Section 4.4 --- Measures of Dependence for Contingency Tables

- We have seen measures of dependence for two numerical variables: for example, \qquad and
\qquad correlation coefficient.
- For categorical data summarized in a contingency table, we have seen how to test for dependence between rows and columns.
- Suppose we wish to measure the degree (or perhaps nature) of the dependence?
- The size of the chi-square test statistic T tells us something about the degree of dependence, but it is only meaningful relative to the \qquad .

Cramér's Contingency Coefficient

- A more easily interpretable measure of dependence than T is obtained by dividing T by its maximum possible value (for a given r and \boldsymbol{c}).
- This maximum is
where $q=$
- The square root of this ratio is called Cramér's coefficient:

Interpretations: Cramér's coefficient takes values between \qquad and \qquad .

- A value near 0 indicates
- A value near 1 indicates
- Cramér's coefficient is scale-invariant: If the scope of the study were increased such that every cell in the table were multiplied by some constant, Cramér's coefficient remains the same.

Example 1, Sec. 4.2:

	Low	Marginal	$\frac{\text { Score }}{\text { Good }}$	Excellent
Private	$\mathbf{6}$	$\mathbf{1 4}$	17	9
Public	30	$\mathbf{3 2}$	17	3
T was		N was		q is

Cramér's coefficient =

- We can easily verify that Cramér's coefficient is unchanged if every cell count were multiplied by 10 (or any number).

Example 2, Sec. 4.2:
Snoring Pattern
Never Occasionally \approx Every Night

Heart	Yes	24	35	51
Disease	No	1355	603	416

T was
N was
q is

Cramér's coefficient =

The Phi Coefficient

- While Cramér's coefficient measures the degree of association, it cannot reveal the type of association (positive or negative).
- The type of association is only meaningful when the two variables have corresponding categories.
- The table must be set up so that the row category ordering "matches" the column category ordering.
- Phi is calculated as the \qquad correlation coefficient between the row variable and the column variable, if the categories are coded as numbers.
- For a 2×2 table,
using

Interpretations: The phi coefficient takes values between \qquad and \qquad .

- A value near 0 indicates
- A value near +1 indicates
- A value near - $\mathbf{1}$ indicates

Example 3 (Page 233-234 data tables):

Table A: Phi =

Table B: Phi =
Table C: Phi =
Example 4: Hair Color / Eye Color:
Phi $=$

- For a 2×2 table, Phi equals Cramér's coefficient V times the sign of

Section 4.6 --- Cochran's Test

- In Sec. 5.8 we learned that a block design is simply an extension of a matched-pairs design.
- Instead of each of a pair of similar subjects receiving one of two treatments, we have each of a block of similar subjects receiving one of \boldsymbol{c} treatments.
- When the measurements can be ranked (ordinal or stronger data), we have studied nonparametric analyses of both paired and blocked designs.
- When the measurements are binary, we have studied nonparametric analyses of paired designs.

Recall:

- Now we study block designs with binary measurements. The data are arranged as:
- Since the data are binary, all X_{ij} are either:

Hypotheses of Cochran's Test:
\mathbf{H}_{0} :
where $p_{\mathrm{j}}=$
\mathbf{H}_{1} :

Development of Cochran's Test Statistic

- Note that for large \boldsymbol{r}, by the Central Limit Theorem, the j-th column sum $C_{j}=$
and so
we estimate $\mathrm{E}\left(\boldsymbol{C}_{\mathrm{j}}\right)$ by
and estimate $\operatorname{var}\left(C_{\mathrm{j}}\right)$ by
since under $\mathbf{H}_{\mathbf{0}}$,

So the test statistic is

- By estimating $\mathrm{E}\left(\boldsymbol{C}_{\mathrm{j}}\right)$ and $\operatorname{var}\left(C_{\mathrm{j}}\right)$, we lose 1 degree of freedom, so the null distribution is χ^{2} with \qquad d.f.
- We reject H_{0} when \boldsymbol{T} is excessively \qquad .

Decision rule:

- The P-value is found through interpolation in Table A2 or using R.

Note: For $\boldsymbol{c}=\mathbf{2}$ treatments, Cochran's Test is equivalent to \qquad .

Example: We test whether three rock climbs are equally easy. Five climbers attempted each of the three climbs, and their outcomes were recorded as 0 (failure) or 1 (success). Data: H_{0} :
\mathbf{H}_{1} :

Test statistic

Decision Rule and Conclusion:

P-value

