STAT 518 --- Section 3.4: The Sign Test

• The <u>sign test</u>, as we will typically use it, is a method for analyzing <u>paired</u> data.

Examples of Paired Data:

• Similar subjects are paired off and one of two treatments is given to each subject in the pair.

or

• We could have two observations on the same subject.

The key: With paired data, the pairings cannot be switched around without affecting the analysis.

- We might label one of the variables X_i and the other variable Y_i .
- Our entire bivariate data set for n' individual pairs is:

$$(X_1, Y_1), (X_2, Y_2), \dots, (X_{n'}, Y_{n'})$$

- The bivariate random vectors are assumed to be independent across observations.
- The goal may be to determine whether the X variable tends to be larger than or smaller than the corresponding Y variable.

- Assuming the data are at least ordinal, we could classify each pair as "+" if $X_i < Y_i$ or "-" if $X_i > Y_i$.
- If $X_i = Y_i$ then the pair is classified as "0" or "tie".
- We further assume internal consistency: If P(+) > P(-) for one pair, then P(+) > P(-) for all pairs, and same holds for P(+) < P(-) and P(+) = P(-).

Test Statistic:

• The null distribution of T is binomial (n, p = 0.5)

- The hypotheses of the sign test can be stated in a variety of ways.
- Most generally, we can test any one of:

$$H_0: P(+) = P(-) H_0: P(+) \ge P(-)$$
 $H_1: P(+) \ne P(-) H_1: P(+) < P(-)$
 $H_1: P(+) > P(-)$

• These could be stated in terms of comparing the population medians of X and Y:

$$H_0$$
: Med(Y) = Med(X) H_0 : Med(Y) \geq Med(X) H_0 : Med(Y) \leq Med(X) H_1 : Med(Y) \neq Med(X) H_1 : Med(Y) \neq Med(X) H_1 : Med(Y) \neq Med(X)

*The corresponding rejection rules in each case are:

Reject Ho if

T \(\) \(\) Reject Ho if

T \(\) \(\

where $T \sim \text{Binom}(n, 0.5)$.

• The exact critical region and P-value are found using Table A3 (or the computer) similarly to the other binomial-based tests.

Example 1: Six students are given two tests, one after being fed, and one on an empty stomach. Is there evidence that students perform better on a full stomach? (Use $\alpha = .05$.)

	(,							
Student									
	Scores	1	2	3	4	5	6		
	X (with food)	74	71	82	77	72	81	_	
	Y (without food)	68	71	86	70	67	80		
+/-		-	0	+					
	n=5, $T=$	1	(num	ber	of	+ 's	in	samp	(e)
Ho	$: med(Y) \ge med($	(x) H,	me	d (Y)	< n	ned ((X)	
De	ccision rule: Re	ject H	0 1-	F 7	7 <	0		ote:	
So	we fail to reje	ct Ho	sin	ce	T=	1	P	P(Y±0)=	0312
P-V	alue = P(T = 1)	= 0.	187	5					≤ .05
We	do not conclude less than H	the me	med	ian <	2002	e w	thou	t food	1'5

Example 2: 18 boy/girl sets of twins were scored for "empathy" on a personality test. In ten sets, the girl scored higher; in 7 sets, the boy scored higher, and in one set, the scores were equal. Can we conclude a difference in median empathy between the boy and girl populations? (Use $\alpha = .05$.) Let $\chi = boy$ $\gamma = girl$

Ho:
$$med(Y) = med(X)$$
 Hi: $med(Y) \neq med(X)$

T = # of +'s = 10,
$$n = 17$$

Decision rule:
Reject Ho if $T \le 4$ or if $T \ge 17-4=13$ $P(Y \le 4) = .0245$
Since $T = 10$, we fail to reject Ho.
P-value = $2[\min \{P(T \le 10), P(T \ge 10)\}\}$
= $2[1-.6855] = [.629]$

- One way to view the sign test is simply as the binomial test, where $p^* = 0.5$.
- We classify each trial as "+" or "-" and determine whether the probability of "+" is different from/greater than/ less than 0.5.
- Note that performing the quantile test about the median is essentially performing the sign test, where the second variable is simply the constant number x^* .

- The sign test is appropriate for any data measured on an ordinal or stronger scale.
- If the paired differences $Y_i X_i$ are continuous with a symmetric distribution, the Wilcoxon signed-rank test (we will see it in Chapter 5) may be more powerful than the sign test.
- If the paired differences $Y_i X_i$ have a normal distribution, the <u>paired t-test</u> is the most powerful option.

A.R.E.(sign vs. signed-rank)

Population

Efficiency of the Sign Test

A.R.E.(sign vs. paired-t)

· · · · · · · · · · · · · · · · · · ·				
Normal O	.667	0.6	37	
Uniform (light tails)	0,333	0.333		
Double exponential (heavy tails)	1.333	2.0	20	
- Sign test we	orks well	for 1	heavy-tailed	
distribution	S .			