STAT 518 --- Section 3.1: The Binomial Test

- Many studies can be classified as binomial experiments.

Characteristics of a binomial experiment

(1) The experiment consists of a number (denoted n) of identical trials.
(2) There are only two possible outcomes for each trial - denoted "Success" $\left(\mathrm{O}_{1}\right)$ or "Failure" $\left(\mathrm{O}_{2}\right)$
(3) The probability of success (denoted p) is the same for each trial. (Probability of failure $=q=1-p$. .)
(4) The trials are independent.

Example 1: We want to estimate the probability that a pain reliever will eliminate a headache within one hour. Example 2: We want to estimate the proportion of schools in a state that meet a national standard for excellence.
Example 3: We want to estimate the probability that a drug will reduce the chance of a side effect from cancer treatment.

- Consider a specific value of p, say p^{*} where $0<p^{*}<1$.
- For a test about \boldsymbol{p}, our null hypothesis will be:
- The alternative hypothesis could be one of:
Two-tailed
Lower-tailed
Upper-tailed
- The test statistic is $T=$
- The null distribution of T is simply the \qquad distribution with parameters
- Table A3 tabulates this distribution for selected parameter values (for $n \leq 20$).
- For examples with $n>20$, a normal approximation may be used, or better yet, a computer can perform the exact binomial test even with large sample sizes.

Decision Rules

- Two-tailed test: We reject H_{0} if \boldsymbol{T} is very or very \qquad -

Reject \mathbf{H}_{0} if $\boldsymbol{T} \leq \mathrm{t}_{\mathbf{1}}$ or $\boldsymbol{T}>\mathrm{t}_{\mathbf{2}}$.

- How to pick the numbers t_{1} and t_{2} ?

Picture of null distribution:

- From Table A3, using n and p^{*}, find t_{1} and t_{2} such that
where $\alpha_{1}+\alpha_{2} \leq \alpha$.
- Note we need $\mathbf{P}($ Type I error $) \leq \alpha$.
- The $\underline{P-v a l u e}$ of the test, for an observed test statistic $T_{\text {obss }}$, is defined as:
where $Y \sim \operatorname{Binomial}\left(n, p^{*}\right)$.
- Lower-tailed test: We reject \mathbf{H}_{0} if \boldsymbol{T} is very

Reject $\mathbf{H}_{\mathbf{0}}$ if $\boldsymbol{T} \leq \boldsymbol{t}$.

- We pick the critical value t such that
- From Table A3, using n and p^{*}, find \boldsymbol{t} such that
- The P-value of the test, for an observed test statistic $\mathrm{T}_{\text {obs, }}$, is:
where $Y \sim \operatorname{Binomial}\left(n, p^{*}\right)$.
- Upper-tailed test: We reject H_{0} if \boldsymbol{T} is very \qquad .

Reject $\mathbf{H}_{\mathbf{0}}$ if $\boldsymbol{T}>\boldsymbol{t}$.

- We pick the critical value t such that
- From Table A3, using n and p^{*}, find t such that
- The P-value of the test, for an observed test statistic $\mathrm{T}_{\text {obs }}$, is:
where $Y \sim \operatorname{Binomial}\left(n, p^{*}\right)$.

Example 1: The standard pain reliever eliminates headaches within one hour for 60% of consumers. A new pill is being tested, and on a random sample of 17 people, the headache is eliminated within an hour for 14 of them. At $\alpha=.05$, is the new pill significantly better than the standard?

Hypotheses:

Decision rule: Reject $\mathbf{H}_{\mathbf{0}}$ if

Test statistic $\boldsymbol{T}=$
P-value $=$

Conclusion:

On computer: Use binom. test function in \mathbf{R} (see example code on course web page)

Example 2: In the past, $\mathbf{3 5 \%}$ of all high school seniors have passed the state science exit exam. In a random sample of 19 students from one school, 8 passed the exam. At $\alpha=.05$, is the probability for this school significantly different from the overall probability?

Hypotheses:

Decision rule: Reject $\mathbf{H}_{\mathbf{0}}$ if

Test statistic $\boldsymbol{T}=$
\mathbf{P}-value $=$

Conclusion:

On computer: Use binom. test function in \mathbf{R} (see example code on course web page)

- The binomial distribution can be used to construct exact (even for small samples) confidence intervals for a population proportion or binomial probability.
- The Clopper-Pearson CI method inverts the test of \mathbf{H}_{0} : $p=p^{*}$ vs. $\mathrm{H}_{1}: p \neq p^{*}$.
- This CI consists of all values of p^{*} such that the above null hypothesis would not be rejected, for our given observed data set.

Example 2:

- You can verify that a p^{*} of 0.40 would not be rejected based on our exit-exam data.
- So 0.40 would be inside the CI for \boldsymbol{p}.
- But a value for p^{*} like 0.90 would have been rejected, so the CI for \mathbf{p} would not include $\mathbf{0 . 9 0}$.
- In general, finding all the values that make up the CI requires a table or computer.
- Table A4 gives two-sided confidence intervals (either $\mathbf{9 0 \%}, \mathbf{9 5 \%}$, or $\mathbf{9 9 \%}$ CIs) for \boldsymbol{p} when $\boldsymbol{n} \leq \mathbf{3 0}$.
- For larger samples, for one-sided CIs, or for other confidence levels, the binom. test function in R gives the Clopper-Pearson CI.

Example 2 again: Find a 95\% CI for the probability that a random student for this school passes the exam.

Table A4:

- Using R, find a 98\% CI for p.

Example 1 again: Find a 90% CI for the proportion of headaches relieved by the new pill.

Table A4:

- Using R, find a 90\% one-sided lower confidence bound for p.
- Note: The Clopper-Pearson method guarantees coverage probability of at least the nominal level. It may result in an excessively wide interval.
- The Wilson score CI approach (use prop. test in R) typically gives shorter intervals, but could have coverage probability less than the nominal level.

Section 3.2: The Quantile Test

- Assume that the measurement scale of our data are at least ordinal. Then it is of interest to consider the quantiles of the distribution.

Case I: Suppose the data are continuous. Then the p^{*} th quantile is a number x^{*} such that

- Consider testing the null hypothesis that the p *th quantile is some specific number x^{*}, i.e.,
- If we denote $P(X \leq x)$ by p, then we see this is the same null as in the binomial test, and we can conduct the test in the same way.
- Assume the data are a random sample (i.i.d. random variables) measured on at least an ordinal scale.
- Which test statistic we use will depend on the alternative hypothesis. Consider
$\mathrm{T}_{1}=$
$\mathrm{T}_{2}=$
- Note $T_{1} \geq T_{2}$, and if none of the data values equal the number x^{*}, then:
- The null distribution of the test statistics T_{1} and T_{2} is again \qquad .

Three Possible Sets of Hypotheses

Two-tailed test:

\mathbf{H}_{0} :
\mathbf{H}_{1} :

Decision rule:
where $\alpha_{1}+\alpha_{2} \leq \alpha$.

- The P-value of the test is:
where $Y \sim \operatorname{Binomial}\left(n, p^{*}\right)$.
"Quantile greater than" alternative:
\mathbf{H}_{0} :
H_{1} :

Decision rule:

- The $\mathbf{P - v a l u e}$ of the test is:
where $Y \sim \operatorname{Binomial}\left(n, p^{*}\right)$.
"Quantile less than" alternative:
\mathbf{H}_{0} :
H_{1} :

Decision rule:

- The \mathbf{P}-value of the test is:
where $Y \sim \operatorname{Binomial}\left(n, p^{*}\right)$.

Example: Suppose the upper quartile (0.75 quantile) of a college entrance exam is known to be 193. A random sample of 15 students' scores from a particular high school are given on page 139. Does the population upper quartile for this high school's students differ from the national upper quartile of 193? Use $\alpha=0.05$.
\mathbf{H}_{0} :
\mathbf{H}_{1} :

Decision Rule (using Table A3):

Observed test statistics:

P-value:

Conclusion:

Example: Suppose the median (0.5 quantile) selling price (in \$1000s) of houses in the U.S. from 1996-2005 was 179. Suppose a random sample of 18 house sale prices from 2011 is 1205006410417227533655535251 $\begin{array}{lllll}214 & 1250 & 402 & 27109 & 17 \\ 334 & \text { 205. Has the population }\end{array}$ median sale price decreased from 179? Use $\alpha=0.05$.
H_{0} :
\mathbf{H}_{1} :

Decision Rule (using Table A3):

Observed test statistic:

P-value:

Conclusion:

- See \mathbf{R} code on course web page for examples using the quantile. test function.

Confidence Interval for a Quantile

- Recall $X^{(1)} \leq X^{(2)} \leq \ldots \leq X^{(n)}$ are called the ordered sample, or order statistics.
- The order statistics can be used to construct an exact CI for any population quantile.
- Suppose the desired confidence level is $\mathbf{1 - \alpha}$ (e.g., 0.90, $0.95,0.99$, etc.).
- In Table A3, use the column for p^{*} (quantile desired).
- In Table A3, find a probability near $\alpha / 2$ (call this α_{1}).
- The corresponding y in Table A3 is then called r - 1 .
- Then find a probability near $1-\alpha / 2$ (call this $1-\alpha_{2}$).
- The corresponding y in Table A3 is then called $s-1$.
- Then the pair of order statistics $\left[X^{(r)}, X^{(s)}\right]$ yields a CI for the p^{*} th population quantile.
- This CI will have confidence level at least $1-\alpha_{1}-\alpha_{2}$ (exactly $1-\alpha_{1}-\alpha_{2}$ if the data are continuous).

Example (House prices): Find an exact CI with confidence level at least 95% for the population median house price in 2011.

Example (House prices): Find an exact CI with confidence level at least $\mathbf{9 5 \%}$ for the population 0.80 quantile of house prices in 2011.

- See R code on course web page for examples using the quantile.interval function.

Comparison of the Quantile Test to Parametric Tests

- The quantile test is valid for data that are \qquad or \qquad , whereas the one-sample t-test about the mean requires that data be \qquad .
- So the quantile test is more applicable.
- Suppose our distribution is continuous and symmetric. Then: population median = population mean.
- So the quantile test about the median is testing the same thing as the t-test about the mean.
- Which is more efficient? Depends on true population distribution:

Population A.R.E. of quantile test to t-test

Normal
Uniform (light tails)
Double exponential
(heavy tails)

- See R code on course web page for power functions of quantile test and \mathbf{t}-test for various population distributions.

