Design of Experiments

- Factorial experiments require a lot of resources
- Sometimes real-world practical considerations require us to design experiments in specialized ways.
- The <u>design</u> of an experiment is the specification of how treatments are assigned to experimental units.

<u>Goal</u>: Gain maximum amount of reliable information using minimum amount of resources.

- Reliability of information is measured by the standard error of an estimate.
- How to decrease standard errors and thereby increase reliability?

- Recall the One-Way ANOVA:
- Experiments we studied used the Completely Randomized Design (CRD).

- The estimate of σ^2 was MSW. This measured the variation among responses for units <u>that were treated</u> <u>alike</u> (measured variation <u>within groups</u>).
- We call this estimating the <u>experimental error</u> variation.
- What if we divide the units into subgroups (<u>called blocks</u>) such that units <u>within each subgroup</u> were similar in some way?
- We would expect the variation in response values among units treated alike <u>within each block</u> to be relatively small.

Randomized Block Design (RBD)

- RBD: A design in which experimental units are divided into subgroups called <u>blocks</u> and treatments are randomly assigned to units <u>within each block</u>.
- Blocks should be chosen so that units within a block are similar in some way.
- Reasons for the variation in our data values:

<u>CRD</u> <u>RBD</u>

- Benefits of a reduction in experimental error:
 - decreases MSW (denominator of F^* ratios used in F-tests) \rightarrow more power to reject null hypotheses
 - decreases standard errors of means → shorter
 CIs for mean responses

Example 1: Suppose we investigate whether the average math-test scores of students from 8 different majors differ across majors.

- But ... students will be taught by different instructors.
- We're not as interested in the instructor effect, but we know it adds another layer of variability.

Solution:

Example 2: Lab animals of a certain species are given different diets to determine the effect of diet on weight gain.

• Possible block design:

Example 3: An industrial experiment is conducted over several days (with a different lab technician each day).

• Possible block design:

Example 4: (Table 10.2 data)

Y = wheat crop yield

experimental units = plots of wheat

treatments = 3 different varieties of wheat

blocks = regions of field

Possible arrangement:

- The data are given in Table 10.2.
- Note: Variety A has the greatest mean yield, but there is a sizable variation among blocks.
- If we had used a CRD, this variation would all be experimental error variance (inflates MSW).
- Analysis as CRD (ignoring blocks):

• But ... within each block, Variety A clearly has the greatest yield (RBD will account for this).

Formal Linear Model for RBD

• This assumes <u>one observation per treatment-block</u> combination.

 Y_{ij} = response value for treatment i in block j

 μ = an overall mean response

 τ_i = effect of treatment i

 β_i = effect of block j

 $\varepsilon_{ij} = \text{random error term}$

• Looks similar to two-factor factorial model with one observation per cell.

Key difference: With RBD, we are not equally interested in both factors.

- The treatment factor is of primary importance; the blocking factor is included merely to reduce experimental error variance.
- With RBD, the block effects are often considered random (not fixed) effects.
- This is true if the blocks used are a random sample from a large population of possible blocks.

- If treatment effects are fixed and block effects are random, the RBD model is called a <u>mixed model</u>.
- In this case, the treatment-block interaction is also random.
- This interaction measures the variation among treatment effects across the various blocks.
- The mean square for interaction is used here as an estimate of the experimental error variance σ^2 .

Expected Mean Squares in RBD

Source \underline{df} $\underline{E(MS)}$

• Testing for an effect or treatments:	n the mean response among
H ₀ :	
• The correct test statistic	ic is apparent based on E(MS):
$\mathbf{F}^* =$	Reject H ₀ if:
• Testing for significant	variation across blocks:
H ₀ :	
• The correct test statistic	ic is again apparent:
$\mathbf{F}^* =$	Reject H ₀ if:
Example: (Wheat data -	- Table 10.2)
• The ANOVA table for two-way ANOVA.	mulas are the same as for the
• We use software for th	e ANOVA table computations.

RBD	analysis	(Wheat	data):

 $\mathbf{F}^* =$

• We conclude that the mean yields are significantly different for the different varieties of wheat. At $\alpha = 0.05$, we reject H_0 : $\tau_1 = \tau_2 = \tau_3 = 0$.

Note (for testing about blocks):

 $\mathbf{F}^* =$

- We would also reject H_0 : $\sigma_{\beta}^2 = 0$ and conclude there is significant variation among block effects.
- We can again make pre-planned comparisons using contrasts.

Example: Is Variety A <u>superior</u> to the other two varieties in terms of mean yield?

 H_0 :

Ha:

Result: