## One-Way Analysis of Variance

- With regression, we related two quantitative, typically continuous variables.
- Often we wish to relate a quantitative response variable with a qualitative (or simply discrete) independent variable, also called a factor.
- In particular, we wish to compare the mean response value at several levels of the discrete independent variable.

Example: We wish to compare the mean wage of farm laborers for 3 different races (black, white, Hispanic). Is there a difference in true mean wage among the ethnic groups?

- If there were only 2 levels, could do a:
- For 3 or more levels, must use the Analysis of Variance (ANOVA).
- The Analysis of Variance tests whether the means of $t$ populations are equal. We test:
- Suppose we have $\boldsymbol{t}=\mathbf{4}$ populations. Why not test:
with a series of $t$-tests?
- If each test has $\alpha=.05$, probability of correctly failing to reject $\mathrm{H}_{0}$ in all 6 tests (when all nulls are true) is:
$\rightarrow$ Actual significance level of the procedure is 0.265 , not $0.05 \rightarrow$ We will make some Type I error with probability 0.265 if all 4 means are truly equal.


## Why Analyze Variances to Compare Means?

- Look at Figure 6.1, page 248.

Case I and Case II: Both have independent samples from 3 populations.

- The positions of the $\mathbf{3}$ sample means are the same in each case.
- In which case would we conclude a definite difference among population means $\mu_{1}, \mu_{2}, \mu_{3}$ ?

Case I?

## Case II?

- This comparison of variances is at the heart of ANOVA.


## Assumptions for the ANOVA test:

(1) There are $t$ independent samples taken from $t$ populations having means $\mu_{1}, \mu_{2}, \ldots, \mu_{\mathrm{t}}$.
(2) Each population has the same variance, $\sigma^{2}$.
(3) Each population has a normal distribution.

- The data (observed values of the response variable) are denoted:
- Each sample has size $n_{i}$, for a total of observations.

Example: $\boldsymbol{Y}_{47}=$

Notation
The $\boldsymbol{i}$-th level's total: $\boldsymbol{Y}_{i \bullet}$ (sum over $\boldsymbol{j}$ )
The $i$-th level's mean: $\bar{Y}_{i}$.
The overall total: $Y_{\text {.. }}($ sum over $i$ and $j$ )
The overall mean: $\bar{Y}_{\text {.. }}$

## Estimating the variance $\sigma^{2}$

- For $i=1, \ldots, t$, the sum of squares for each level is
$\mathbf{S S}_{i}=$
- Adding all the $\mathbf{S S}_{i}$ 's gives the pooled sum of squares:
- Dividing by our degrees of freedom gives our estimate of $\sigma^{2}$ :
- Recall: For 2-sample t-test, pooled sample variance was:
- This is the correct estimate of $\sigma^{2}$ if all $t$ populations have equal variances.
- We will have to check this assumption.


## Development of ANOVA F-test

- Assume sample sizes all equal to $n$ :
$n_{1}=n_{2}=\ldots=n_{t}(=n) \leftarrow$ balanced data
- Suppose $H_{0}: \mu_{1}=\mu_{2}=\ldots=\mu_{t}(=\mu)$ is true.
- Then each sample mean $\bar{Y}_{i}$. has mean and variance
- Treat these group sample means as the "data" and treat the overall sample mean as the "mean" of the group means. Then an estimate of $\sigma^{2} / n$ is:

Recall:

Consider the statistic:

- With normal data, the ratio of two independent estimates of a common variance has an F-distribution.
$\rightarrow$ If $\mathbf{H}_{\mathbf{0}}$ true, we expect $\mathrm{F}^{*}$ has an F -distribution.
- If $H_{0}$ false ( $\mu_{1}, \mu_{2}, \ldots, \mu_{t}$ not all equal), the sample means should be more spread out.
$\longrightarrow$


## General ANOVA Formulas (Balanced or Unbalanced)

- We want to compare the variance between (among) the sample means with the variance within the different groups.
- Variance between group means measured by:
and, after dividing by the "between groups" degrees of freedom,
- Variance within groups measured by:
and, after dividing by the "within groups" degrees of freedom,
- In general, our F-ratio is:
- Under $\mathrm{H}_{\mathbf{0}}, \mathrm{F}^{*}$ has an $\mathbf{F}$-distribution with:
- The total sum of squares for the data:
can be partitioned into
- The degrees of freedom are also partitioned:
- This can be summarized in the ANOVA table:

Example: Table 6.4 (p. 253) gives yields (in pounds/acre) for 4 different varieties of rice (4 observations for each variety)

$$
\begin{aligned}
& \sum_{i} \frac{Y_{i \bullet}^{2}}{n_{i}}= \\
& \frac{Y_{\bullet \bullet}^{2}}{\sum n_{i}}=
\end{aligned}
$$

$\mathbf{S S B}=$
$\sum_{r=}^{2}=$
SSW =

## ANOVA table for Rice Data:

- Back to original question: Do the four rice varieties have equal population mean yields or not?
$\mathbf{H}_{0}: \mu_{1}=\mu_{2}=\mu_{3}=\mu_{4}$
$H_{a}$ : At least one equality is not true
Test statistic:
At $\alpha=0.05$, compare to:
Conclusion:


# "Treatment Effects" Linear Model: 

Our ANOVA model equation:

Denote the $\boldsymbol{i}$-th "treatment effect" by:

- The ANOVA model can now be written as:
- Note that our ANOVA test of: $\mathbf{H}_{0}: \mu_{1}=\mu_{2}=\ldots=\mu_{t}$ is the same as testing:

Note: For balanced data,
$\mathbf{E}(\mathrm{MSB})=$
and $E(M S W)=$
If $\mathbf{H}_{\mathbf{0}}$ is true (all $\tau_{i}=\mathbf{0}$ ):
If $\mathbf{H}_{\mathbf{0}}$ is false:

