
Remedies for Violations of Error Assumptions 

 

● Assumptions about  the same as in SLR. 

 

● Residual plots will again help find violations in MLR. 

 

● Transformations may help fix violations (trickier in 

MLR). 

 

● Using )log(* YY   or YY *  can stabilize non-

constant error variance or fix non-normality violation. 

 

Example (Surgical Data): 

 

 

 

 

 

 

● Again, drawback is that model may be less 

interpretable. 

 

Special Models 

 

● Residual plots (in SLR or MLR) may provide 

evidence that the linear trend does not hold or that the 

error variance is not constant. 

 

● Special models can explicitly account for these 

situations. 



● The polynomial regression model allows for a 

curvilinear relationship between Y and the predictor(s). 

 

 

 

 

 

 

 

● A multiplicative model (see Sec. 8.6.2) is useful when 

the error variance increases for larger values of Y. 

 

 

 

● Note this model is equivalent to the linearized form: 

 

 

 

● In practice, both the polynomial regression model and 

the multiplicative model can be fit by transforming 

variables and using MLR software. 

 

 

Multicollinearity 

 

● If several independent variables measure similar 

phenomena, their sample values may be strongly 

correlated. 

 

● This is known as multicollinearity. 

 



Example:  Predicting javelin throw length based on 

ability in bench press (X1), military press (X2), curl (X3), 

chest circumference (X4). 

 

● Natural association among the independent variables. 

 

● Including many similar independent variables in the 

model is easy to do, and may actually improve 

prediction. 

 

● Problem:  The effect of each individual variable may 

be masked with multicollinearity. 

 

Common Problems Caused by Multicollinearity 

 

(1) large standard errors for estimated regression 

coefficients → leads to concluding individual variables 

are not significant even though overall model may be 

highly significant. 

  

(2) Signs of estimated regression coefficients seem 

“opposite” of intuition (idea of “holding all other X’s 

constant” doesn’t make sense). 

 

● A common measure to detect multicollinearity is the 

Variance Inflation Factor (VIF). 

● For an independent variable Xj, its VIF is: 

 

 

 

 



High Rj
2
 (near 1) →     

 

 

 

 

Rules of thumb:   

● VIF = 1 → Xj not involved in any multicollinearity 

● VIF > 10 → Xj involved in severe multicollinearity 

 

● In practice we obtain VIF values from computer. 

 

Example: 

 

 

 

Remedies for Multicollinearity 

 

(1) Drop one or more variables from model  

 

(2) Rescale variables (often to account for trends over 

time like population increases) 

 

 

 

(3) More advanced:  Principal components regression, 

Ridge regression. 

 

 

● Important note:  Multicollinearity does not typically 

harm the predictive ability of a model. 

 



Variable Selection 

 

● Often a very large number of possible independent 

variables are considered in a study. 

 

● Which ones are really worth including in the model? 

 

●  A model with many independent variables: 

 

 

 

● A model with few independent variables: 

 

 

 

 

● If there are m independent variables under 

consideration, how many possible subsets of variables 

do we have? 

 

 

● Computer procedures can help search among many 

possible models. 

 

Goals:   

(1)  Choose a model that yields accurate (i.e., unbiased) 

estimates and predictions 

(2) Choose a model that explains much of the variation 

in Y. 

(3) Choose a parsimonious model. 

 



Achieving the Goals 

 

(1) Mallows’ C(p) statistic measures the bias in the 

model under consideration, relative to the full model. 

 

● For a model having p independent variables, we 

would want C(p) to be near p + 1. 

 

● C(p) >>  p + 1 → 

 

 

● C(p) <<  p + 1 → 

 

 

Formula:   

 

 

Note:  If MSEp ≈ MSEfull, then:  

 

(2) Normally R
2
 tells us the proportion of variation in Y 

that the model explains. 

● But R
2
 always increases when new variables are 

added to a model → inappropriate to compare models 

with a different number of independent variables using 

R
2
. 

 

Better:  Adjusted R
2
 (Ra

2
), which penalizes models 

having more variables. 

 

Ra
2
 = 

 



Compare R
2
 and Ra

2
: 

 

 

 

● Choosing the model with the maximum Ra
2
 is 

equivalent to choosing the model with the minimum 

MSE. 

 

● The “best” model is usually a compromise between 

the choice using the C(p) criterion and the choice using 

the Ra
2
 criterion. 

 

● All else being equal, a simpler model is usually better. 

 

Problems with Automatic Variable Selection 

 

(1) If we really are really interested in the (partial) 

effect of some independent variable Xj on Y, we may 

need to include Xj even if it’s not in the “best” subset. 

 

(2) Using the data to choose the “best” model and then 

examining P-values amounts to using the data to 

suggest hypotheses – can alter Type I error rates. 

 

Note:  If we initially have a large number (≥ 20) of 

independent variables, finding the “best” model can be 

time-consuming. 

 

● Pages 434-435 discuss initial screening methods 

(stepwise methods) to eliminate some variables quickly. 

 



Detecting Outliers and Influential Points 

 

● Outliers:  Observations that do not fit the general 

pattern of points. 

 

● With MLR, cannot see outliers using a simple scatter 

plot of the data.  Why? 

 

● Examining residuals still helps find outliers. 

Rule of thumb: 

 |studentized residual| > 2.5 → possible outlier 

 

● Outlying data values that occur near the extremes of 

the range of X values often greatly influence the position 

of the least-squares line. 

 

● These points are called high-leverage points. 

 

Picture: 

 

 

 

 

 

 

 

 

 

● Hard to “visualize” leverage when there are several 

independent variables. 

 



● In MLR, the n   n “hat” matrix is: 

 

● For each observation, the corresponding diagonal 

element of the hat matrix measures how similar that 

observation is to the others, in terms of its X1, X2, …, Xm 

values. 

 

Rule of thumb:  If the i-th hat diagonal is greater than 

2(m + 1) / n, then the i-th observation is a high-leverage 

point. 

 

Influence Diagnostics 

 

● Question: How much would the regression line 

change if we estimated it after removing a particular 

observation? 

 

● If the regression line would change greatly, that point 

is an influence point. 

 

● DFFITS, for each observation, measures the 

difference between: 

  * the predicted value from the regression estimated 

with that observation included 

and 

  * the predicted value from the regression estimated 

with that observation removed. 

 

● Any observation with a |DFFITS| greater than:     

is considered an influence point. 

 



● What to do if we have influence points? 

 

(1) Verify the data point is recorded correctly. 

(2) Fit the regression line with and without the point(s).  

Do the substantive conclusions about the regression 

change? 

(3) Ask:  Does the observation reflect a fluke or a truly 

important event? 

 

● Automatically deleting outliers and influence points 

can be bad practice. 

 

Rain example: 

 

Outlier detection: 

 

 

 

 

Hat diagonals: 

 

 

 

 

 

DFFITS: 

 

 

 

 


