Multiple Regression

• Often we have data on <u>several</u> independent variables that can be used to predict / estimate the response.

Example: To predict Y = teacher salary, we may use:

Example: Y = sales at music store may be related to:

• A linear regression model with more than one independent variable is a <u>multiple linear regression</u> (MLR) model:

• In general, we have m independent variables and m + 1 unknown regression parameters.

Purposes of the MLR model

(1) Estimate the mean response $E(Y | \underline{X})$ for a given set of $X_1, X_2, ..., X_m$ values.

(2) Predict the response for a given set of $X_1, X_2, ..., X_m$ values.

(3) Evaluate the relationship between *Y* and the independent variables by interpreting the partial regression coefficients β_0 , β_1 , ..., β_m (or their estimates).

Interpretations:

• (Estimated intercept): the (estimated) mean response if <u>all</u> independent variables are zero (may not make sense)

• β_i (or $\hat{\beta}_i$): The (estimated) change in mean response for a one-unit increase in X_i , holding constant all other independent variables.

• May not be possible: What if X_1 = home runs and X_2 = runs scored?

• Note: The <u>partial effects</u> of each independent variable in a MLR model do <u>not</u> equal the effect of each variable in separate SLR models.

• Why? The independent variables tend to be correlated to some degree.

• Partial effect: interpreted as the effect of an independent variable "<u>in the presence of</u> the other variables in the model."

• Finding least-squares estimates of β_0 , β_1 , ..., β_m is typically done using matrices:

$$\underline{\hat{\beta}} = (\mathbf{X}^{\mathrm{T}}\mathbf{X})^{-1} \mathbf{X}^{\mathrm{T}}\underline{\mathbf{Y}}$$

where: \underline{Y} = vector of the *n* observed *Y* values in data set X = matrix containing the observed values of the independent variables (see sec. 8.2)

 $\hat{\underline{\beta}}$ = a vector of the least squares estimates $\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_m$

• We will use software to find the estimates of the regression coefficients in the MLR model.

Example: Data gathered for 30 California cities. Y = annual precipitation (in inches) $X_1 =$ altitude (in feet) $X_2 =$ latitude (in degrees) $X_3 =$ distance from Pacific (in miles)

Estimated model is: $\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X_1 + \hat{\beta}_2 X_2 + \hat{\beta}_3 X_3$ **From computer:**

Interpretation of $\hat{\beta}_0$? Interpretation of $\hat{\beta}_2$? **Interpretation of** $\hat{\beta}_3$ **?**

Inference with the MLR model

• Again, we don't know σ^2 (the error variance), so we must estimate it.

• Again, we use as our estimate of σ^2 :

• As in SLR, the total variation in the sample *Y* values can be separated: TSS = SSR + SSE.

• SS formulas given in book – for MLR, we will use software.

Error df = MSE =

- Most values in ANOVA table similar as for SLR.
- *m* d.f. associated with SSR
- n m 1 d.f. associated with SSE

Overall F-test

• Tests whether the model as a whole is useless.

• Null hypothesis: none of the independent variables are useful for predicting *Y*.

H₀: $\beta_1 = \beta_2 = ... = \beta_m = 0$ H_a: At least one of these is not zero

• Again, test statistic is F* = MSR / MSE

• If $F^* > F_{\alpha}(m, n - m - 1)$, then reject H_0 and conclude at least one of the variables is useful.

Rain data: F* =

Testing about Individual Coefficients

• Most easily done with t-tests.

• The *j*-th estimate, $\hat{\beta}_j$, is (approximately) normal with mean β_j and standard deviation $\sqrt{c_{jj}\sigma^2}$, where $c_{jj} = j$ -th diagonal element of $(\mathbf{X}^T\mathbf{X})^{-1}$ matrix.

• Replace σ^2 with its estimate, MSE:

• To test $H_0: \beta_j = 0$, note:

• For each coefficient, computer gives: $\hat{\beta}_{j}$, $\sqrt{c_{jj}MSE}$, and t statistic.

 H_a <u>Reject H_0 if</u>:

Software gives P-value for the (two-tailed) test about <u>each</u> β_j separately.

Rain data:

F-tests about sets of independent variables

• We can also test whether certain sets of independent variables are useless, <u>in the presence of</u> the other variables in the model.

Example: Suppose variables under consideration are X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈.

Question: Are X₂, X₄, X₇ needed, if the others are in the model?

• We want our model to have "large" SSR and "small" SSE. Why?

• If "full model" has much lower SSE than the "reduced model" (without X₂, X₄, X₇), then at least one of X₂, X₄, X₇ is needed.

 \rightarrow conclude β_2 , β_4 , β_7 not all zero.

• To test: $H_0: \beta_2 = \beta_4 = \beta_7 = 0$ vs. $H_a: \beta_2, \beta_4, \beta_7$ not all zero

Use:

Reject H₀ if

Example above: numerator d.f. =

• Can test about more than one (but not all) coefficients within computer package (TEST statement in SAS or anova function in R)

Example:

Inferences for the Response Variable in MLR

As in SLR, we can find:

• CI for the mean response for a given set of values of $X_1, X_2, ..., X_m$.

• PI for the response of a new observation with a given set of values of $X_1, X_2, ..., X_m$.

Examples:

• Find a 90% CI for the mean precipitation for all cities with altitude 100 feet, latitude 40 degrees, and 70 miles from the coast.

• Find a 90% prediction interval for the precipitation of a new city having altitude 100 feet, latitude 40 degrees, and 70 miles from the coast.

Interpretations:

• The coefficient of determination in MLR is denoted R².

• It is the proportion of variability in Y explained by the linear relationship between Y and <u>all</u> the independent variables (Note: $0 \le R^2 \le 1$).

• The higher R², the better the linear model explains the variation in *Y*.

• No exact rule about what a "good" R² is.

Rain example:

Interpretation: