
Multiple Regression 

 

● Often we have data on several independent variables 

that can be used to predict / estimate the response. 

 

Example:  To predict Y = teacher salary, we may use: 

 

 

 

 

 

 

Example:  Y = sales at music store may be related to: 

 

 

 

 

 

 

 

● A linear regression model with more than one 

independent variable is a multiple linear regression 

(MLR) model: 

 

 

 

 

 

● In general, we have m independent variables and  

m + 1 unknown regression parameters. 

 



Purposes of the MLR model 

 

(1) Estimate the mean response E(Y | X) for a given set 

of X1, X2, …, Xm values. 

 

(2) Predict the response for a given set of X1, X2, …, Xm 

values. 

 

(3) Evaluate the relationship between Y and the 

independent variables by interpreting the partial 

regression coefficients 0, 1, …, m (or their estimates). 

 

Interpretations: 

● (Estimated intercept):  the (estimated) mean response 

if all independent variables are zero (may not make 

sense) 

● i (or i̂ ):  The (estimated) change in mean response 

for a one-unit increase in Xi , holding constant all other 

independent variables. 

● May not be possible:  What if X1 = home runs and  

X2 = runs scored? 

 

● Note:  The partial effects of each independent 

variable in a MLR model do not equal the effect of each 

variable in separate SLR models. 

 

● Why?  The independent variables tend to be 

correlated to some degree. 

 



● Partial effect:  interpreted as the effect of an 

independent variable “in the presence of the other 

variables in the model.” 

 

● Finding least-squares estimates of 0, 1, …, m is 

typically done using matrices: 

̂  = (X
T
X)
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T
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where:  Y = vector of the n observed Y values in data set 

X = matrix containing the observed values of the 

independent variables (see sec. 8.2) 

̂  = a vector of the least squares estimates m ˆ,,ˆ,ˆ
10   

 

● We will use software to find the estimates of the 

regression coefficients in the MLR model. 

 

Example:  Data gathered for 30 California cities. 

Y = annual precipitation (in inches) 

X1 = altitude (in feet) 

X2 = latitude (in degrees) 

X3 = distance from Pacific (in miles) 

 

Estimated model is:  3322110
ˆˆˆˆˆ XXXY    

From computer: 

 

 

Interpretation of 0̂ ? 

Interpretation of 2̂ ? 

 



Interpretation of 3̂ ? 

 

 

 

 

Inference with the MLR model 

 

● Again, we don’t know 2
 (the error variance), so we 

must estimate it. 

● Again, we use as our estimate of 2
: 

 

 

 

● As in SLR, the total variation in the sample Y values 

can be separated:  TSS = SSR + SSE. 

 

● SS formulas given in book – for MLR, we will use 

software. 

 

Rain example:  SSR =    SSE =      

      

Error df =     MSE =   

 

● Most values in ANOVA table similar as for SLR. 

 

● m d.f. associated with SSR 

● n – m – 1 d.f. associated with SSE 

 

 

 



Overall F-test 

 

● Tests whether the model as a whole is useless. 

 

● Null hypothesis:  none of the independent variables 

are useful for predicting Y. 

 

H0: 1 = 2 = … = m = 0 

Ha: At least one of these is not zero 

 

● Again, test statistic is F* = MSR / MSE 

 

● If F* > F(m, n – m – 1), then reject H0 and conclude 

at least one of the variables is useful. 

 

Rain data:  F* =  

 

 

 

 

 

Testing about Individual Coefficients 

 

● Most easily done with t-tests. 

● The j-th estimate, j̂  , is (approximately) normal with 

mean j and standard deviation 
2jjc , where cjj = j-th 

diagonal element of (X
T
X)

-1
 matrix. 

 

● Replace 2
 with its estimate, MSE: 

 



● To test H0: j = 0, note: 

 

 

 

 

 

 

● For each coefficient, computer gives: j̂ , MSEc jj , 

and t statistic. 

 

Ha   Reject H0 if: 

 

 

 

 

 

 

 

Software gives P-value for the (two-tailed) test about 

each j separately. 

 

Rain data: 

 

 

 

 

 

 

 

 



F-tests about sets of independent variables 

 

● We can also test whether certain sets of independent 

variables are useless, in the presence of the other 

variables in the model. 

 

Example:  Suppose variables under consideration are 

X1, X2, X3, X4, X5, X6, X7, X8. 

 

Question:  Are X2, X4, X7 needed, if the others are in the 

model? 

 

● We want our model to have “large” SSR and “small” 

SSE.  Why? 

 

● If “full model” has much lower SSE than the 

“reduced model” (without X2, X4, X7), then at least one 

of X2, X4, X7 is needed.   

→ conclude 2, 4, 7 not all zero. 

 

● To test:     H0: 2 = 4 = 7 = 0 

vs. Ha: 2, 4, 7 not all zero 

 

Use: 

 

 

 

Reject H0 if  

 

Example above:  numerator d.f. =  

 



● Can test about more than one (but not all) coefficients 

within computer package (TEST statement in SAS or 

anova function in R) 

 

Example: 

 

 

 

 

 

 

 

 

Inferences for the Response Variable in MLR 

 

As in SLR, we can find: 

 

● CI for the mean response for a given set of values of 

X1, X2, …, Xm. 

 

● PI for the response of a new observation with a given 

set of values of X1, X2, …, Xm. 

 

Examples: 

● Find a 90% CI for the mean precipitation for all cities 

with altitude 100 feet, latitude 40 degrees, and 70 miles 

from the coast. 

● Find a 90% prediction interval for the precipitation 

of a new city having altitude 100 feet, latitude 40 

degrees, and 70 miles from the coast. 

 



Interpretations: 

 

 

 

 

 

 

 

 

 

 

● The coefficient of determination in MLR is denoted 

R
2
. 

 

● It is the proportion of variability in Y explained by the 

linear relationship between Y and all the independent 

variables (Note: 0 ≤ R
2
 ≤ 1). 

 

● The higher R
2
, the better the linear model explains 

the variation in Y. 

● No exact rule about what a “good” R
2
 is. 

 

 

 

Rain example: 

 

 

Interpretation: 


