
Estimating 2 

 

● We can do simple prediction of Y and estimation of 

the mean of Y at any value of X. 

 

● To perform inferences about our regression line, we 

must estimate 2, the variance of the error term. 

 

● For a random variable Y, the estimated variance is: 

 

 

 

 

 

 

● In regression, the estimated variance of Y (and also of 

) is: 

 

 

 

 

 

 

  2)ˆ( YY  is called the error (residual) sum of 

squares (SSE). 

● It has n – 2 degrees of freedom. 

 

● The ratio MSE = SSE / df  is called the mean squared 

error.  

 



● MSE is an unbiased estimate of the error variance 2. 

 

● Also, MSE serves as an estimate of the error 

standard deviation . 

 

Partitioning Sums of Squares 

 

● If we did not use X in our model, our estimate for the 

mean of Y would be: 

 

Picture: 

 

 

 

 

 

For each data point: 

● YY   = difference between observed Y and sample 

mean Y-value 

● YY ˆ  = difference between observed Y and predicted 

Y-value 

● YY ˆ  = difference between predicted Y and sample 

mean Y-value 

 

● It can be shown: 

 

 

 

 

 



● TSS = overall variation in the Y-values 

● SSR = variation in Y accounted for by regression line 

● SSE = extra variation beyond what the regression 

relationship accounts for 

 

Computational Formulas: 
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SSR = (SXY)2 / SXX = XYS1̂  

 

SSE = SYY – (SXY)2 / SXX = XYYY SS 1̂  

 

Case (1):  If SSR is a large part of TSS, the regression 

line accounts for a lot of the variation in Y. 

 

Case (2):  If SSE is a large part of TSS, the regression 

line is leaving a great deal of variation unaccounted for. 

 

ANOVA test for 1 

 

● If the SLR model is useless in explaining the variation 

in Y, then Y  is just as good at estimating the mean of Y 

as Ŷ is. 

 

=> true 1 is zero and X doesn’t belong in model 

 

● Corresponds to case (2) above. 

 

 



● But if (1) is true, and the SLR model explains a lot of 

the variation in Y, we would conclude 1 ≠ 0. 

 

● How to compare SSR to SSE to determine if (1) or (2) 

is true? 

 

● Divide by their degrees of freedom.  For the SLR 

model: 

 

 

 

 

● We test: 

 

● If MSR much bigger than MSE, conclude Ha. 

Otherwise we cannot conclude Ha. 

 

The ratio F* = MSR / MSE has an F distribution with  

df = (1, n – 2) when H0 is true. 

 

Thus we reject H0 when 

 

where  is the significance level of our hypothesis test. 

 

 

 

 

 

 

 

 



t-test of H0: 1 = 0 

 

● Note:  1 is a parameter (a fixed but unknown value) 

● The estimate 1̂  is a random variable (a statistic 

calculated from sample data). 

● Therefore 1̂  has a sampling distribution: 

 

 

 

 

 

● 1̂  is an unbiased estimator of 1. 

 

● 1̂  estimates 1 with greater precision when: 

 ● the true variance of Y is small. 

 ● the sample size is large. 

 ● the X-values in the sample are spread out. 

 

Standardizing, we see that: 

 

 

 

 

Problem:  2 is typically unknown.  We estimate it with 

MSE.  Then: 

 

 

 

 



To test H0: 1 = 0, we use the test statistic: 

 

 

 

 

 

 

 

Advantages of t-test over F-test: 

(1) Can test whether the true slope equals any specified 

value (not just 0).   

Example:  To test H0: 1 = 10, we use: 

 

 

 

 

(2) Can also use t-test for a one-tailed test, where:  

Ha: 1 < 0 or Ha: 1 > 0. 

 

Ha   Reject H0 if: 

 

 

 

 

 

 

 

(3) The value 
XXS

MSE
 measures the precision of 1̂  as an 

estimate. 



Confidence Interval for 1 

 

● The sampling distribution of 1̂  provides a 

confidence interval for the true slope 1: 

 

 

 

 

 

 

Example (House price data): 

 

Recall:  SYY = 93232.142, SXY = 1275.494, SXX = 22.743 

 

Our estimate of 2 is MSE = SSE / (n – 2) 

 

SSE = 

 

MSE =  

 

and recall 

 

● To test H0: 1 = 0 vs. Ha: 1 ≠ 0  (at  = 0.05) 

 

 

 

 

Table A.2:  t.025(56) ≈ 2.004.   

 

 



● With 95% confidence, the true slope falls in the 

interval 

 

Interpretation: 

 

 

 

 

Inference about the Response Variable 

● We may wish to: 

 

(1) Estimate the mean value of Y for a particular value 

of X.  Example: 

 

 

 

(2) Predict the value of Y for a particular value of X.  

Example: 

 

 

 

The point estimates for (1) and (2) are the same:  The 

value of the estimated regression function at X = 1.75. 

 

Example: 

 

 

 

 

● Variability associated with estimates for (1) and (2) is 

quite different. 



)]|(ˆ[ XYEVar  

 

]ˆ[ predYVar  

 

● Since 2 is unknown, we estimate 2 with MSE: 

 

CI for E(Y | X) at x*: 

 

 

 

 

Prediction Interval for Y value of a new observation 

with X = x*: 

 

 

 

 

 

Example:  95% CI for mean selling price for houses of 

1750 square feet: 

 

 

 

 

 

 

 

 

 

 



Example:  95% PI for selling price of a new house of 

1750 square feet: 

 

 

 

 

 

 

 

 

Correlation 

● 1̂  tells us something about whether there is a linear 

relationship between Y and X. 

● Its value depends on the units of measurement for the 

variables. 

 

● The correlation coefficient r and the coefficient of 

determination r2 are unit-free numerical measures of 

the linear association between two variables. 

 

● r =       

 

(measures strength and direction of linear relationship) 

 

● r always between -1 and 1: 

●  r > 0  → 

 

●  r < 0  → 

 

●  r = 0  → 



●  r near -1 or 1  → 

 

●  r near 0  → 

 

● Correlation coefficient (1) makes no distinction 

between independent and dependent variables, and (2) 

requires variables to be numerical. 

 

Examples: 

House data: 

 

 

Note that 









Y

X

s

s
r 1̂  so r always has the same sign as the 

estimated slope. 

 

● The population correlation coefficient is denoted . 

● Test of H0:  = 0 is equivalent to test of H0: 1 = 0 in 

SLR (p-value will be the same) 

 

● Software will give us r and the p-value for testing H0: 

 = 0 vs. Ha:  ≠ 0. 

 

● To test whether  is some nonzero value, need to use 

transformation – see p. 355. 

 

● The square of r, denoted r2, also measures strength of 

linear relationship. 

 

● Definition:  r2 = SSR / TSS. 



Interpretation of r2:  It is the proportion of overall 

sample variability in Y that is explained by its linear 

relationship with X. 

Note:  In SLR, 2
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● Hence:  large r2 → large F statistic → significant 

linear relationship between Y and X. 

 

Example (House price data): 

 

 

 

Interpretation: 

 

 

 

Regression Diagnostics 

 

● We assumed various things about the random error 

term.  How do we check whether these assumptions are 

satisfied? 

 

● The (unobservable) error term for each point is: 

 

 

 

● As “estimated” errors we use the residuals for each 

data point: 

 

 

 



● Residual plots allow us to check for four types of 

violations of our assumptions: 

 

(1) The model is misspecified  

(linear trend between Y and X incorrect) 

(2) Non-constant error variance 

 (spread of errors changes for different values of X) 

(3) Outliers exist 

 (data values which do not fit overall trend) 

(4) Non-normal errors 

 (error term is not (approx.) normally distributed) 

 

● A residual plot plots the residuals YY ˆ  against the 

predicted values Ŷ . 

● If this residual plot shows random scatter, this is 

good. 

● If there is some notable pattern, there is a possible 

violation of our model assumptions. 

 

Pattern      Violation 

 

 

 

 

 

 

 

 

 

 



● We can verify whether the errors are approximately 

normal with a Q-Q plot of the residuals. 

 

● If Q-Q plot is roughly a straight line → the errors 

may be assumed to be normal. 

 

Example (House data): 

 

 

 

 

 

Remedies for Violations – Transforming Variables 

 

● When the residual plot shows megaphone shape  

(non-constant error variance) opening to the right, we 

can use a variance-stabilizing transformation of Y. 

 

● Picture: 

 

 

 

 

 

● Let )log(* YY   or YY *  and use Y* as the 

dependent variable. 

 

● These transformations tend to reduce the spread at 

high values of Ŷ . 

 



● Transformations of Y may also help when the error 

distribution appears non-normal. 

 

● Transformations of X and/or of Y can help if the 

residual plot shows evidence of a nonlinear trend. 

 

● Depending on the situation, one or more of these 

transformations may be useful: 

 

 

 

 

 

 

● Drawback:  Interpretations, predictions, etc., are now 

in terms of the transformed variables.  We must reverse 

the transformations to get a meaningful prediction. 

 

Example (Surgical data): 

 

 

 

 

 

 


