Randomized Block Design with Sampling

- Sometimes we may have more than one observation per treatment-block combination.
- Within each block, we have a sample of $n \geq 2$ observations having the same treatment.
- Model equation for RBD with sampling:
- $\varepsilon_{i j}$ was experimental error \rightarrow measures variation among the treatment mean responses (across the collection of blocks) $\left[\operatorname{var}\left(\varepsilon_{i j}\right)=\sigma^{2}\right]$
- $\delta_{i j k}$ is sampling error \rightarrow measures variation among units having the same treatment within the same block $\left[\operatorname{var}\left(\delta_{i j k}\right)=\sigma_{\delta}^{2}\right]$
- In this situation, we must look carefully at the Expected MS to choose the appropriate denominator for our F-statistic.
- Assuming treatment effects are fixed and block effects are random:
Source
df
Expected(MS)
- Testing for treatment effects:

Recall H_{0} :

- If $\mathbf{H}_{\mathbf{0}}$ is true, then which two Mean Squares have the same expected value?
- Appropriate test statistic is:
$F^{*}=\quad$ Reject H_{0} if:
- What is the test statistic for testing $H_{0}: \sigma_{\beta}{ }^{2}=0$?
$\mathrm{F}^{*}=\quad$ Reject H_{0} if:
- What is the test statistic for testing $H_{0}: \sigma^{2}=0$?
$\mathrm{F}^{*}=\quad$ Reject H_{0} if:

Example: Experiment on stretching ability (Table 10.6, p. 535-536)

Response $=$ stretching ability of rubber material Treatments $=7$ materials (A, B, C, D, E, F, G) Blocks = 13 lab sites

- At each lab, there were $\boldsymbol{n}=4$ units for each type of material.
$n=4, t=7, b=13 \rightarrow$ total of observations overall.
- Is there a significant difference in mean stretching ability among the seven materials?
- We test:
$\mathbf{F}^{*}=$

Compare to
Software gives P-value:

- Reject H_{0} and conclude there is a significant difference in mean stretching ability among the seven materials.
- Which of the materials are significantly different in terms of mean stretching ability?
- Can use Tukey multiple comparisons procedure (experimentwise error rate $\alpha=0.05$).

Results from software:

Latin Square Designs

- Sometimes we may have two blocking factors.

Example: Suppose we are comparing tire performance across four tire brands (label them A, B, C, D).

- The blocking factors are $\operatorname{Car}(1,2,3,4)$ and Tire Position (1, 2, 3, 4).
- If we make each car/position combination a block, we have 16 blocks \rightarrow we need 64 tires (inefficient and costly!)
- What if we only have 16 tires for the experiment?

A Poor Arrangement:

- Here, the value of car as a blocking factor is lost.
- Each car has only one brand of tire.

A Better Arrangement:

- Now each car gets each brand of tire and each position gets each brand of tire.
- This design is called a Latin Square.
- Each row and each column contains each treatment once and only once.
- A $t \times t$ Latin Square is used for an experiment for t treatments and two blocking factors:
- Row factor with t levels
- Column factor with t levels

Formal Linear Model for Latin Square:

Note: In a Latin Square design, there is assumed to be no interaction!

Example (Table on course web page): Experiment to study the effect of music type on employee productivity

- Treatments: $A=$ rock $\&$ roll, $B=$ country,$C=$ easy listening, $\mathrm{D}=$ classical, $\mathrm{E}=$ none.
- Row factor levels: 5 times of day
(9-10, 10-11, 11-12, 1-2, 2-3)
- Column factor levels: 5 days of week (Mon, Tue, Wed, Thu, Fri)
- Each music type appears once on each day and once at each time of day.
- Testing for a significant effect of music type on mean productivity:
$\mathbf{F}^{*}=$
- There is a significant difference in mean productivity among the five music types.
- Note: There is also a significant row effect (time of day) and a significant column effect (day of week).
- Specifically, which music types are significantly different?
- Using Tukey's procedure, we see:

Summary:

- Main advantage of a Latin Square design:

Efficiency - can perform useful tests with relatively few experimental units.

- Main disadvantage: cannot test for any interaction.

