STAT 516 --- STATISTICAL METHODS II

STAT 516 is primarily about linear models.
Model: A mathematical equation describing (approximating) the relationship between two (or more) variables.

- Any assumptions we make about the variables are also part of the model.

Simple Linear Regression (SLR) Modeling

- Analyzes the relationship between two quantitative variables.
- We have a sample, and for each observation, we have data observed for two variables:

Dependent (Response) Variable: Measures major outcome of interest in study (often denoted Y)

Independent (Predictor) Variable: Another variable whose value may explain, predict or affect the value of the dependent variable (often denoted X)

Example:

- In SLR, we assume the relationship between Y and X can be mathematically approximated by a straight-line equation.
- We assume this is a statistical relationship: not a perfect linear relationship, but an approximately linear one.

Example: Consider the relationship between

$$
\begin{aligned}
& X= \\
& Y=
\end{aligned}
$$

We might expect that gas spending changes with distance traveled - maybe nearly linearly.

- If we took a sample of trips and measured X and Y for each, would the data fall exactly along a line?

Picture:

- Our goal is often to predict Y (or to estimate the mean of Y) based on a given value of X.

Examples:

Simple Linear Regression Model: (expressed mathematically)

$$
Y=\beta_{0}+\beta_{1} X+\varepsilon
$$

Deterministic Component:

Random Component:

Regression Coefficients:

$$
\beta_{0}=
$$

$\beta_{1}=$
$\varepsilon=$

We assume ε has a

Since ε has mean 0 , the mean (expected value) of Y, for a given X-value, is:

- This is called the conditional mean of Y.
- The deterministic part of the SLR model is simply the mean of Y for any value of X :

Example: Suppose $\beta_{0}=2, \beta_{1}=1$.

Picture:

- When $X=1, \mathrm{E}(Y)=$
- When $X=2, \mathrm{E}(Y)=$
- The actual Y values we observe for these X values are a little different - they vary along with the random error component ε.

Assumptions for the SLR model:

- The linear model is correctly specified
- The error terms are independent across observations
- The error terms are normally distributed
- The error terms have the same variance, σ^{2}, across observations

Notes:

- Even if Y is linearly related to X, we rarely conclude that X causes Y.
-- This would require eliminating all unobserved factors as possible causes for Y.
- We should not use the regression line for extrapolation: that is, predicting Y for any X values outside the range of our observed X values.
-- We have no evidence that a linear relationship is appropriate outside the observed range.

Picture:

Example: Data gathered on 58 houses (Table 7.2, p. 328)
$X=$ size of house (in thousands of square feet) $Y=$ selling price of house (in thousands of dollars)

- Is a linear relationship between X and Y appropriate?

On computer, examine a scatter plot of the sample data.

- How to choose the "best" slope and intercept for these data?

Estimating Parameters

- β_{0} and β_{1} are unknown parameters.
- We use the sample data to find estimates $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$.
- Typically done by choosing $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ to produce the least-squares regression line:

Picture:

For each data point, predicted Y-value is denoted \hat{Y}.

Picture:

- Residual (or error) $=Y-\hat{Y}$ for each data point.
- We want our line to make these residuals as small as possible.

Least-squares line: The line chosen so that the sum of squared residuals (SSE) is minimized.

- Choose $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ to minimize:

Example: (House Price data):
 The following can be calculated from the sample:

So the estimates are:

Our estimated regression line is:

- Typically, we calculate the least-squares estimates on the computer.

Interpretations of estimated slope and intercept:

