STAT 515 -- Chapter 8: Hypothesis Tests

• CIs are possibly the most useful forms of inference because they give a <u>range</u> of "reasonable" values for a parameter.

But sometimes we want to know whether <u>one</u> <u>particular value</u> for a parameter is "reasonable."
In this case, a popular form of inference is the <u>hypothesis test</u>.

We use data to test a <u>claim</u> (about a parameter) called the <u>null hypothesis</u>.

Example 1: We claim the proportion of USC students who travel home for Christmas is 0.95.

Example 2: We claim the mean nightly hotel price for hotels in SC is no more than \$65.

• Null hypothesis (denoted H₀) often represents "status quo", "previous belief" or "no effect".

• Alternative hypothesis (denoted H_a) is usually what we seek evidence for.

We will reject H_0 and conclude H_a <u>if the data provide</u> <u>convincing evidence</u> that H_a is true.

Evidence in the data is measured by a test statistic.

A test statistic measures how far away the corresponding sample statistic is from the parameter value(s) specified by H₀.

If the sample statistic is extremely far from the value(s) in H_0 , we say the test statistic falls in the "rejection region" and we reject H_0 in favor of H_a .

Example 2: We assumed the mean nightly hotel price in SC is no more than \$65, but we seek evidence that the mean price is actually greater than \$65. We randomly sample 64 hotels and calculate the sample mean price

 \overline{X} . Let $Z = \frac{\overline{X} - 65}{\sigma / \sqrt{n}}$ be our "test statistic" here.

Note: If this Z value is much bigger than zero, then we have evidence against H_0 : $\mu \le 65$ and in favor of H_a : $\mu \ge 65$.

Suppose we'll reject H_0 if Z > 1.645.

If μ really is 65, then Z has a standard normal distribution. (Why?)

Picture:

If we reject H_0 whenever Z > 1.645, what is the probability we reject H_0 when H_0 <u>really is true</u>?

 $P(Z > 1.645 | \mu = 65) =$

This is the probability of making a Type I error (rejecting H₀ when it is actually true).

P(Type I error) = "level of significance" of the test (denoted α).

We don't want to make a Type I error very often, so we choose α to be small:

The α we choose will determine our rejection region (determines how strong the sample evidence must be to reject H₀).

In the previous example, if we choose $\alpha = .05$, then Z > 1.645 is our rejection region.

Hypothesis Tests of the Population Mean

In practice, we don't know σ , so we don't use the Z-statistic for our tests about μ .

Use the t-statistic: $t = \frac{\overline{X} - \mu_0}{s / \sqrt{n}}$, where μ_0 is the value in the null hypothesis.

This has a t-distribution (with n - 1 d.f.) if H₀ is true (if μ really equals μ_0).

Example 2: Hotel prices: $H_0: \mu = 65$ $H_a: \mu > 65$

Sample 64 hotels, get $\overline{X} = {}^{\$}67$ and $s = {}^{\$}10$. Let's set $\alpha = .05$.

Rejection region:

Reject H_0 if *t* is bigger than 1.67.

Conclusion:

We never accept H₀; we simply "fail to reject" H₀.

This example is a <u>one-tailed test</u>, since the rejection region was in one tail of the t-distribution.

Only very <u>large</u> values of t provided evidence against H_0 and for H_a .

Suppose we had sought evidence that the mean price was less than \$72. The hypotheses would have been:

H₀:
$$\mu = 72$$

H_a: $\mu < 72$

Now very small values of $t = \frac{\overline{X} - \mu_0}{s / \sqrt{n}}$ would be evidence against H₀ and for H_a.

Rejection region would be in left tail:

Rules for one-tailed tests about population mean

Test statistic: $t = \frac{\overline{X} - \mu_0}{s / \sqrt{n}}$

Rejection $t < -t_{\alpha}$ $t > t_{\alpha}$ Region:
(where t_{α} is based on n-1 d.f.)

Rules for two-tailed tests about population mean $H_0: \mu = \mu_0$ $H_a: \mu \neq \mu_0$

Test statistic:

$$t = \frac{X - \mu_0}{s / \sqrt{n}}$$

Rejection $t < -t_{\alpha/2}$ or $t > t_{\alpha/2}$ (both tails)Region:
(where $t_{\alpha/2}$ is based on n - 1 d.f.)

Example: We want to test (using $\alpha = .05$) whether or not the true mean height of male USC students is 70 inches.

Sample 26 male USC students. Sample data: $\overline{X} = 68.5$ inches, s = 3.3 inches.

<u>Assumptions of t-test (and CI) about µ</u>

• We assume the data come from a population that is approximately normal.

• If this is not true, our conclusions from the hypothesis test may not be accurate (and our true level of confidence for the CI may not be what we specify).

• How to check this assumption?

• The t-procedures are robust: If the data are "close" to normal, the t-test and t CIs will be quite reliable.

Hypothesis Tests about a Population Proportion

We often wish to test whether a population proportion *p* equals a specified value.

Example 1: We suspect a theater is letting underage viewers into R-rated movies. Question: Is the proportion of R-rated movie viewers at this theater greater than 0.25?

We test:

Recall: The sample proportion \hat{p} is approximately $N\left(p, \sqrt{\frac{pq}{n}}\right)$ for large *n*, so our test statistic for testing $H_0: p = p_0$

has a standard normal distribution when H_0 is true (when p really is p_0).

Rules for one-tailed tests about population proportion

$H_0: p = p_0$		$H_0: p = p_0$
$H_a: p < p_0$	or	$H_a: p > p_0$

Test statistic: $z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0 q_0}{n}}}$

Rejection $z < -z_{\alpha}$ $z > z_{\alpha}$ Region:

Rules for two-tailed tests about population proportion $H_0: p = p_0$ $H_a: p \neq p_0$

Test statistic:

$$z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0 q_0}{n}}}$$

Rejection $z < -z_{\alpha/2}$ or $z > z_{\alpha/2}$ (both tails)Region:

Assumptions of test (need large sample):

Need:

Example 1: Test H_0 : p = 0.25 vs. H_a : p > 0.25 using $\alpha = .01$.

We randomly select 60 viewers of R-rated movies, and 23 of those are underage.

Example 1(a): What if we had wanted to test whether the proportion of underage viewers was <u>different from</u> 0.25?

P-values

Recall that the significance level α is the desired P(Type I error) that we specify <u>before the test</u>.

The P-value (or "observed significance level") of a test is the probability of observing as extreme (or more extreme) of a value of the test statistic than we did observe, if H_0 was in fact true.

The P-value gives us an indication of the <u>strength of</u> <u>evidence</u> against H_0 (and for H_a) in the sample.

This is a <u>different</u> (yet <u>equivalent</u>) way to decide whether to reject the null hypothesis:

• A small p-value (less than α) = strong evidence against the null => Reject H₀

• A large p-value (greater than α) = little evidence against the null => Fail to reject H₀

How do we calculate the P-value? It depends on the alternative hypothesis.

One-tailed tests

Alternative H_a: " < " <u>P-value</u> <u>Area to the left</u> of the test statistic value in the appropriate distribution (t or z).

H_a: " > "

<u>Area to the right of the test statistic</u> value in the appropriate distribution (t or z).

Alternative	<u>Two-tailed test</u> P-value
H _a : "≠"	2 times the "tail area" outside the
	test statistic value in the appropriate distribution (t or z). <u>Double</u> the tail
	area to get the P-value!

P-values for Previous Examples

Hotel Price Example: H_0 : $\mu = 65$ vs. H_a : $\mu > 65$

Test statistic value:

Student height example: H_0 : $\mu = 70$ vs. H_a : $\mu \neq 70$ Test statistic value: Movie theater example: H_0 : p = 0.25 vs. H_a : p > 0.25Test statistic value:

What if we had done a two-tailed test of H_0 : p = 0.25 vs. H_a : $p \neq 0.25$ at $\alpha = .01$?

Relationship between a CI and <u>a (two-sided) hypothesis test</u>:

• A test of $H_0: \mu = m^*$ vs. $H_a: \mu \neq m^*$ will reject H_0 if and only if a corresponding CI for μ does not contain the number m^* .

Example: A 95% CI for μ is (2.7, 5.5).

(1) At $\alpha = 0.05$, would we reject H₀: $\mu = 3$ in favor of H_a: $\mu \neq 3$?

(2) At $\alpha = 0.05$, would we reject H_0 : $\mu = 2$ in favor of H_a : $\mu \neq 2$?

(3) At $\alpha = 0.10$, would we reject H_0 : $\mu = 2$ in favor of H_a : $\mu \neq 2$?

(4) At $\alpha = 0.01$, would we reject H₀: $\mu = 3$ in favor of H_a: $\mu \neq 3$?

Power of a Hypothesis Test

• Recall the significance level α is our desired P(Type I error) = P(Reject H₀ | H₀ true)

The other type of error in hypothesis testing: Type II error =

P(**Type II error**) = β

The power of a test is

• High power is desirable, but we have little control over it (different from α)

<u>Calculating Power</u>: The power of a test about μ depends on several things: α , *n*, σ , and the true μ .

Example 1: Suppose we test whether the true mean nicotine contents in a population of cigarettes is greater than 1.5 mg, using $\alpha = 0.01$.

H₀: **H**_a:

We take a random sample of 36 cigarettes. Suppose we know $\sigma = 0.20$ mg. Our test statistic is

We reject H₀ if:

• Now, suppose μ is actually 1.6 (implying that H₀ is false). Let's calculate the power of our test if $\mu = 1.6$:

This is just a normal probability problem!

• What if the true mean were 1.65?

Verify:

• The farther the true mean is into the "alternative region," the more likely we are to correctly reject H₀.

Example 2: Testing H_0 : p = 0.9 vs. H_a : p < 0.9 at $\alpha = 0.01$ using a sample of size 225.

Suppose the true *p* is 0.8. Then our power is: