STAT 515 -- Chapter 7: Confidence Intervals

• With a point estimate, we used a single number to estimate a parameter.

• We can also use a <u>set of numbers</u> to serve as "reasonable" estimates for the parameter.

Example: Assume we have a sample of size 100 from a population with $\sigma = 0.1$.

From CLT:

Empirical Rule: If we take many samples, calculating \overline{X}

each time, then about 95% of the values of $\overline{\mathbf{X}}$ will be between:

Therefore:

This intervalis called an approximate95% "confidence interval" for μ.

<u>Confidence Interval</u>: An interval (along with a level of confidence) used to estimate a parameter.

• Values in the interval are considered "reasonable" values for the parameter.

<u>Confidence level</u>: The percentage of all CIs (if we took many samples, each time computing the CI) that contain the true parameter.

<u>Note</u>: The endpoints of the CI are <u>statistics</u>, calculated from sample data. (The <u>endpoints</u> are random, not the parameter!)

In general, if \overline{X} is normally distributed, then in $100(1 - \alpha)\%$ of samples, the interval

will contain µ.

Note: $z_{\alpha/2}$ = the z-value with $\alpha/2$ area to the right:

100(1 – α)% CI for μ : $\overline{\mathbf{X}} \pm \mathbf{z}_{\alpha/2}(\sigma/\sqrt{n})$

Problem: We typically do not know the parameter σ . We must use its estimate *s* instead.

<u>Formula</u>: CI for μ (when σ is unknown)

Since $\frac{\overline{X} - \mu}{s / \sqrt{n}}$ has a t-distribution with n - 1 d.f., our 100(1 - α)% CI for μ is:

where $t_{\alpha/2}$ = the value in the t-distribution (n - 1 d.f.) with $\alpha/2$ area to the right: • This is valid if the data come from a normal distribution.

Example: We want to estimate the mean weight μ of trout in a lake. We catch a sample of 9 trout. Sample

mean $\overline{\mathbf{X}}$ = 3.5 pounds, *s* = 0.9 pounds. 95% CI for μ ?

<u>Question</u>: What does 95% confidence <u>mean</u> here, exactly?

• If we took many samples and computed many 95% CIs, then about 95% of them would contain μ .

The fact thatcontains μ "with 95%confidence" implies the method used would capture μ95% of the time, if we did this over many samples.

Picture:

<u>A WRONG statement</u>: "There is .95 probability that μ is between 2.81 and 4.19." Wrong! μ is not random – μ doesn't change from sample to sample. It's either between 2.81 and 4.19 or it's not.

Interpreting a 95% Confidence Interval: TRUE or FALSE?

(1) 95% of all trout have weights between 2.81 and 4.19 pounds.

- (2) 95% of samples have $\overline{\mathbf{X}}$ between 2.81 and 4.19.
- (3) 95% of samples will produce intervals that contain $\mu.$
- (4) 95% of the time, μ is between 2.81 and 4.19.
- (5) The probability that μ falls within a 95% CI is 0.95.

(6) The probability that μ falls between 2.81 and 4.19 is 0.95.

Level of Confidence

Recall example: 95% CI for μ was (2.81, 4.19).

- For a 90% CI, we use t_{.05} (8 d.f.) = 1.86.
- For a 99% CI, we use t_{.005} (8 d.f.) = 3.355.

90% CI:

99% CI:

Note tradeoff: If we want a higher confidence level, then the interval gets wider (less precise).

Confidence Interval for a Proportion

• We want to know how much of a population has a certain characteristic.

• The proportion (always between 0 and 1) of individuals with a characteristic is the same as the probability of a random individual having the characteristic.

Estimating proportion is equivalent to estimating the binomial probability *p*.

Point estimate of *p* is the <u>sample proportion</u>:

Note $\hat{p} = \frac{x}{n}$ is a type of sample average (of 0's and 1's), so CLT tells us that when sample size is large, sampling distribution of \hat{p} is approximately normal.

For large *n*:

 $100(1 - \alpha)\%$ CI for *p* is:

How large does *n* need to be?

Example 1: A student government candidate wants to know the proportion of students who support her. She takes a random sample of 93 students, and 47 of those support her. Find a 90% CI for the true proportion.

Check:

Example 2: We wish to estimate the probability that a randomly selected part in a shipment will be defective. Take a random sample of 79 parts, and find 4 defective parts. Find a 95% CI for p.

<u>Confidence Interval for the Variance</u> σ^2 (or for s.d. σ)

Recall that if the data are normally distributed, $\frac{(n-1)s^2}{\sigma^2}$ has a χ^2 sampling distribution with (n-1) d.f. This can be used to develop a $(1-\alpha)100\%$ CI for σ^2 :

Example: Trout data example (assume data are normal – how to check this?) s = 0.9 pounds, so $s^2 = n = 9$. Find 95% CI for σ^2 .

95% CI for σ :

Also, a CI for the ratio of two variances, $\frac{\sigma_1^2}{\sigma_2^2}$, can be found by the formula:

Example: If we have a second sample of 13 trout with sample variance $s_2^2 = 0.7$, then a 95% CI for $\frac{\sigma_1^2}{\sigma_2^2}$ is:

Sample Size Determination

Note that the <u>bound</u> (or <u>margin of error</u>) *B* of a CI equals half its width.

For the CI for the mean (with σ known), this is:

For the CI for the proportion, this is:

Note: When the sample size *n* is bigger, the CI is narrower (more precise).

We often want to determine what sample size we need to achieve a pre-specified margin of error and level of confidence. Solving for *n*:

CI for mean:

CI for proportion:

Note: Always round *n* <u>up</u> to the next largest integer.

These formulas involve σ , *p* and *q*, which are usually unknown in practice. We typically guess them based on prior knowledge – often we use *p* = 0.5, *q* = 0.5.

Example 1: How many patients do we need for a blood pressure study? We want a 90% CI for mean systolic blood pressure reduction, with a margin of error of 5 *mmHg*. We believe that $\sigma = 10$ *mmHg*.

Example 2: Pollsters want a 95% CI for the proportion of voters supporting President Obama. They want a 3% margin of error (B = .03). What sample size do they need?