
STAT 515 -- Chapter 11:  Regression 

 

• Mostly we have studied the behavior of a single 

random variable. 

• Often, however, we gather data on two random 

variables. 

• We wish to determine:  Is there a relationship between 

the two r.v.’s? 

• Can we use the values of one r.v. to predict the other 

r.v.? 

• Often we assume a straight-line relationship between 

two variables. 

• This is known as simple linear regression. 

 

Probabilistic vs. Deterministic Models 

 

If there is an exact relationship between two (or more) 

variables that can be predicted with certainty, without 

any random error, this is known as a deterministic 

relationship. 

 

Examples: 

 

 

 

 

 

 

 

 

 



In statistics, we usually deal with situations having 

random error, so exact predictions are not possible. 

 

This implies a probabilistic relationship between the 2 

variables. 

 

Example:   Y = breathalyzer reading 

   X = amount of alcohol consumed (fl. oz.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



• We typically assume the random errors balance out – 

they average zero. 

• Then this is equivalent to assuming the mean of Y, 

denoted E(Y), equals the deterministic component. 

 

Straight-Line Regression Model 

 

Y = 0 + 1X +  

 

Y = response variable (dependent variable) 

X = predictor variable (independent variable) 

 = random error component 

 

0 = Y-intercept of regression line 

1 = slope of regression line 

 

Note that the deterministic component of this model is 

E(Y) = 0 + 1X 

 

Typically, in practice, 0 and 1 are unknown 

parameters.  We estimate them using the sample data. 

 

Response Variable (Y):  Measures the major outcome of 

interest in the study. 

Predictor Variable (X):  Another variable whose value 

explains, predicts, or is associated with the value of the 

response variable. 

 

 

 



Fitting the Model (Least Squares Method) 

 

If we gather data (X, Y) for several individuals, we can 

use these data to estimate 0 and 1 and thus estimate 

the linear relationship between Y and X. 

 

First step:  Decide if a straight-line relationship between 

Y and X makes sense.   

 

Plot the bivariate data using a scattergram (scatterplot). 

 

 

 

 

 

 

 

 

 

 

Once we settle on the “best-fitting” regression line, its 

equation gives a predicted Y-value for any new X-value. 

 

 

 

 

 

 

 

How do we decide, given a data set, which line is the 

best-fitting line? 



 

 

 

 

 

 

Note that usually, no line will go through all the points 

in the data set. 

 

For each point, the error = 

(Some positive errors, some negative errors) 

 

We want the line that makes these errors as small as 

possible (so that the line is “close” to the points). 

 

Least-squares method:  We choose the line that 

minimizes the sum of all the squared errors (SSE).   

 

Least squares regression line: 
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where 0̂ and 1̂ are the estimates of 0 and 1 that 

produce the best-fitting line in the least squares sense. 

 

 

 

 

 

 



Formulas for 0̂ and 1̂ : 

 

Estimated slope and intercept: 
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and n = the number of observations. 

 

Example (Table 11.1): 

 

Y =  

 

X = 
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Interpretations: 

Slope: 

 

 

 

Intercept: 

 

 

 

Example: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Avoid extrapolation:  predicting/interpreting the 

regression line for X-values outside the range of X in the 

data set. 

 

 



Model Assumptions 

 

Recall model equation:   ++= XY 10  

To perform inference about our regression line, we need 

to make certain assumptions about the random error 

component, .  We assume: 

 

(1) The mean of the probability distribution of  is 0.  

(In the long run, the values of the random error 

part average zero.) 

(2) The variance of the probability distribution of  

is constant for all values of X.  We denote the 

variance of  by 2. 

(3) The probability distribution of  is normal. 

(4) The values of  for any two observed Y-values 

are independent – the value of  for one Y-value 

has no effect on the value of  for another Y-

value. 

 

Picture: 

 

 

 

 

 

 

 

 

 

 



Estimating 2 

 

Typically the error variance 2 is unknown. 

 

An unbiased estimate of 2 is the mean squared error 

(MSE), also denoted s2 sometimes. 

 

MSE =   SSE  

               n–2  

 

where SSE = SSyy - 1̂ SSxy  
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Note that an estimate of  is 

s = 
2−

=
n

SSE
MSE  

 

Since  has a normal distribution, we can say, for 

example, that about 95% of the observed Y-values fall 

within 2s units of the corresponding values Ŷ . 

 

 

 

 

 

 

 



Testing the Usefulness of the Model 

 

For the SLR model,   ++= XY 10 .   

 

Note:  X is completely useless in helping to predict Y if 

and only if 1 = 0. 

 

So to test the usefulness of the model for predicting Y, 

we test: 

 

 

 

If we reject H0 and conclude Ha is true, then we 

conclude that X does provide information for the 

prediction of Y. 

 

Picture: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Recall that the estimate 1̂ is a statistic that depends on 

the sample data. 

This 1̂  has a sampling distribution. 

 

If our four SLR assumptions hold, the sampling 

distribution of 1̂  is normal with mean 1 and standard 

deviation                   which we estimate by  

 

 

 

Under H0: 1 = 0, the statistic 
xxSSs /

ˆ
1

 

has a t-distribution with n – 2 d.f. 

 

Test for Model Usefulness 

 

    One-Tailed Tests   Two-Tailed Test 

H0: 1 = 0  H0: 1 = 0   H0: 1 = 0 

Ha: 1 < 0     Ha: 1 > 0   Ha: 1 ≠ 0 

Test statistic:   t = 
xxSSs /

ˆ
1

 

 

Rejection region: 

t < -t   t > t   t > t/2 or t < -t/2 

 

P-value: 

left tail area   right tail area    2*(tail area outside t) 

outside t   outside t  



Example:  In the drug reaction example, recall 1̂ = 0.7.  

Is the real 1 significantly different from 0?   

(Use  = .05.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



A 100(1 – )% Confidence Interval for the true slope 1 

is given by: 

 

 

 

where t/2 is based on n – 2 d.f. 

 

In our example, a 95% CI for 1 is: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Correlation 

 

The scatterplot gives us a general idea about whether 

there is a linear relationship between two variables. 

 

More precise:  The coefficient of correlation (denoted r) 

is a numerical measure of the strength and direction of 

the linear relationship between two variables. 

 

Formula for r (the correlation coefficient between two 

variables X and Y): 
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Most computer packages will also calculate the 

correlation coefficient. 

 

Interpreting the correlation coefficient: 

 

• Positive r  => The two variables are positively 

associated (large values of one variable correspond to 

large values of the other variable) 

• Negative r  => The two variables are negatively 

associated (large values of one variable correspond to 

small values of the other variable) 

• r = 0  => No linear association between the two 

variables. 

 

Note:  -1 ≤ r ≤ 1 always. 

 



How far r is from 0 measures the strength of the linear 

relationship: 

 

• r  nearly 1 => Strong positive relationship between the 

two variables  

• r  nearly -1 => Strong negative relationship between 

the two variables 

• r  near 0 => Weak linear relationship between the two 

variables 

 

Pictures: 

 

 

 

 

 

 

 

 

 

 

Example (Drug/reaction time data): 

 

 

 

 

 

 

Interpretation? 

 

 



Notes:  (1)  Correlation makes no distinction between 

predictor and response variables. 

(2)  Variables must be numerical to calculate r. 

 

Examples:  What would we expect the correlation to be 

if our two variables were: 

(1) Work Experience & Salary? 

 

(2) Weight of a Car & Gas Mileage? 

 

Some Cautions 

Example:    

Speed of a car (X)  | 20 30 40 50 60 

Mileage in mpg (Y)     | 24 28 30 28 24 

 

Scatterplot of these data: 

 

 

 

 

 

 

 

 

 

Calculation will show that r = 0 for these data. 

 

Are the two variables related? 

 

 

 



Another caution:  Correlation between two variables 

does not automatically imply that there is a cause-effect 

relationship between them. 

 

Note:  The population correlation coefficient between 

two variables is denoted .   To test H0:  = 0, we simply 

use the equivalent test of H0: 1 = 0 in the SLR model.  

If this null hypothesis is rejected, we conclude there is a 

significant correlation between the two variables. 

 

The square of the correlation coefficient is called the 

coefficient of determination, r2. 

 

Interpretation:  r2 represents the proportion of sample 

variability in Y that is explained by its linear 

relationship with X. 

 

yySS

SSE
r −= 12

   (r2 always between 0 and 1) 

For the drug/reaction time example, r2 =  

 

Interpretation: 

 

 

 

 

 

 

 

 



Estimation and Prediction with the Regression Model 

 

Major goals in using the regression model: 

(1)  Determining the linear relationship between Y and 

X (accomplished through inferences about 1) 

 

(2) Estimating the mean value of Y, denoted E(Y), for a 

particular value of X. 

Example:  Among all people with drug amount 3.5 mg, 

what is the estimated mean reaction time? 

 

(3)  Predicting the value of Y for a particular value of X. 

Example:  For a “new” individual having drug amount 

3.5 mg, what is the predicted reaction time? 

 

• The point estimate for these last two quantities is the 

same; it is:   

 

 

Example: 

 

 

 

 

 

 

• However, the variability associated with these point 

estimates is very different. 

 

• Which quantity has more variability, a single Y-value 

or the mean of many Y-values? 



This is seen in the following formulas: 

 

100(1 – )% Confidence Interval for the population 

mean value of Y at X = xp: 

 

 

 

 

 

where t/2 based on n – 2 d.f. 

 

100(1 – )% Prediction Interval for an individual new 

value of Y at X = xp: 

 

 

 

 

 

where t/2 based on n – 2 d.f. 

 

The extra “1” inside the square root shows the 

prediction interval is wider than the CI, although they 

have the same center. 

 

Note:  A “Prediction Interval” attempts to contain a 

random quantity, while a confidence interval attempts 

to contain a (fixed) parameter value. 

 

 



The variability in our estimate of E(Y) reflects the fact 

that we are merely estimating the unknown 0 and 1. 

 

The variability in our prediction of the new Y includes 

that variability, plus the natural variation in the Y-

values. 

 

Example (drug/reaction time data): 

95% CI for E(Y) with X = 3.5: 

 

 

 

 

 

 

 

 

 

 

 

 

95% PI for a new Y having X = 3.5: 


