STAT 509 - Sections 7.1-7.2: Design of Experiments

- An engineer conducted an experiment to develop a prediction equation for the distance a catapult can throw a metal ball.
- He manipulated two factors: (A) The angle of the catapult arm (measured in degrees) and (B) the height of the pin that supports the rubber band, measured at equally spaced locations.
- For each factor, two levels were examined, a low level and a high level.
- Angle Levels:

Height Levels:

- In the data set, we will always code the low level of a factor as $\mathbf{- 1}$ and code the high level as 1 .
- Two distance measurements were taken at each treatment (factor level combination):

Angle	Height	Distance 1	Distance 2
-1	$-\mathbf{1}$	$\mathbf{2 7}$	27
1	-1	$\mathbf{8 1}$	$\mathbf{6 7}$
-1	$\mathbf{1}$	67	$\mathbf{6 2}$
1	1	137	$\mathbf{1 5 8}$

- A 2^{k} factorial design measures a response at each treatment, using \boldsymbol{k} factors each having 2 levels.
- The above experiment is a factorial design. Picture:

Notation for Mean Responses in a 2^{2} Factorial Design

- $a=$ Average of responses when A (Angle) is high and B (Height) is low.
- $b=$ Average of responses when B (Height) is high and

A (Angle) is low.

- $a b=$ average of responses when both A (Angle) and B (Height) are high.
- (1) = Average of responses when both A (Angle) and B (Height) are low.

Catapult Experiment:

- The main effect of a factor in a 2^{k} factorial experiment is: (mean response at the high level of the factor) (mean response at the low level of the factor)

Estimated main effect of Angle:

Estimated main effect of Height:

Interactions

- Sometimes there is interaction between two factors.
- If Angle and Height interact, then the effect of Angle on the response differs, depending on the level of Height (and similarly, the effect of Height on the response depends on which level of Angle we are at).
- Whether or not two factors interact can be indicated by an interaction plot.
- An interaction plot plots the means of one factor, separately at each level of the other factor.

Catapult example:

- If the lines in an interaction plot are (nearly) parallel, this indicates NO interaction.
- If the lines in an interaction plot are non-parallel, this indicates interaction between the factors.

Linear Model for the $\mathbf{2}^{\mathbf{2}}$ Factorial Design

$$
Y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\beta_{12} x_{i 1} x_{i 2}+\varepsilon_{i}
$$

- A slope represents the expected change in the response when we increase one factor by one unit while holding the other factor constant.
- Going from -1 to 1 in a factor represents movement of two units.
So:
- In practice, software can produce these estimates:

R code:
$>y<-c(27,27,81,67,67,62,137,158)$
$>\mathrm{x} 1<-\mathrm{c}(-1,-1,1,1,-1,-1,1,1)$
$>x 2<-c(-1,-1,-1,-1,1,1,1,1)$
$>$ summary $(\operatorname{lm}(y \sim x 1+x 2+x 1: x 2))$
$>$ anova(lm(y ~ x1 + x2 + x1:x2))
> interaction.plot(x1, x2, y)

$\underline{2^{k} \text { Full Factorial Design }}$

- We will look at every possible combination of the two levels for k factors.
- Suppose our Catapult Experiment included 4 factors:
- Angle: 180, Full
- Peg Height: 3, 4
- Stop Position: 3, 5
- Hook Position: 3, 5
- Distance was measured for each of two runs at each factor level combination.

$$
\begin{gathered}
\text { Linear Model for this } 2^{4} \text { Factorial Design } \\
Y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\beta_{3} x_{i 3}+\beta_{4} x_{i 4}+\beta_{12} x_{i 1} x_{i 2}+\beta_{13} x_{i 1} x_{i 3}+ \\
\beta_{14} x_{i 1} x_{i 4}+\beta_{23} x_{i 2} x_{i 3}+\beta_{24} x_{i 2} x_{i 4}+\beta_{34} x_{i 3} x_{i 4}+\beta_{123} x_{i 1} x_{i 2} x_{i 3}+ \\
\beta_{124} x_{i 1} x_{i 2} x_{i 4}+\beta_{134} x_{i 1} x_{i 3} x_{i 4}+\beta_{234} x_{i 2} x_{i 3} x_{i 4}+\beta_{1234} x_{i 1} x_{i 2} x_{i 3} x_{i 4}+\varepsilon_{i}
\end{gathered}
$$

- The formulas for the estimated effects can most easily be seen using a table of contrasts:

| 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | (1) |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | :--- | :--- |
| 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | a |
| 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | b |
| 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | ab |
| 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | c |
| 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | ac |
| 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | bc |
| 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | abc |
| 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | d |
| 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | ad |
| 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | bd |
| 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | abd |
| 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | cd |
| 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | acd |
| 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | bcd |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | abcd |

				trt.means	
$[1]$,	-1	-1	-1	-1	358.5
$[2]$,	1	-1	-1	-1	403.5
$[3]$,	-1	1	-1	-1	438.0
$[4]$,	1	1	-1	-1	480.0
$[5]$,	-1	-1	1	-1	381.5
$[6]$,	1	-1	1	-1	438.5
$[7]$,	-1	1	1	-1	475.5
$[8]$,	1	1	1	-1	545.0
$[9]$,	-1	-1	-1	1	419.5
$[10]$,	1	-1	-1	1	484.0
$[11]$,	-1	1	-1	1	491.0
$[12]$,	1	1	-1	1	537.5
$[13]$,	-1	-1	1	1	456.5
$[14]$,	1	-1	1	1	531.0
$[15]$,	-1	1	1	1	482.5
$[16]$,	1	1	1	1	585.5

- The estimated main effect of X_{1} is thus:
- For two-level factorial designs, we get estimates for the main and interaction effects by dividing by half of the number of distinct factorial treatment combinations.
- Catapult example: $2^{4}=16$, so we divide by 8 .
- Formulas for all other estimated main effects and interaction effects can be found using the appropriate column of the table of contrasts.
- In the linear model, the estimated coefficients are simply:
- We again will always use software to get the estimates of these regression coefficients.

R code for example:

```
> catapult4.data <-
read.table("http://www.stat.sc.edu/~hitchcock/CatapultFourFactor.
txt", header=TRUE)
> attach(catapult4.data)
> x1 <- angle; x2 <- PgHt; x3 <- SPos; x4 <- HPos;
y <- Dist
> as.vector(tapply(y, INDEX = list(x1, x2, x3, x4),
mean))
> summary(lm(y ~ x1 * x2 * x3 * x4))
Conclusions?
```


Advanced Concerns

- If there is only one observation per treatment (no replication), formal tests about the effects are impossible.
- A graphical approach to determining which effects are significant involves a normal Q-Q plot of the estimated coefficients. Estimates deviating much from a straight line drawn through the effects near 0 correspond to "significant" effects.
$>$ qqnorm(coef(lm(y ~ x1 * x2 * x3 * x4)) [-1],datax=T)
-When all factors are continuous, the shape (linear? quadratic?) of the response surface can be ascertained by "center runs" (see p. 483-488).

