• Mostly we have studied the behavior of a single random variable.

• Often, however, we gather data on two random variables.

<u>Response Variable (Y)</u>: Measures the major outcome of interest in the study (also called the *dependent* variable). <u>Independent Variable (X)</u>: Another variable whose value explains, predicts, or is associated with the value of the response variable (also called the *predictor* or the *regressor*).

• We wish to determine: Is there a relationship between the two r.v.'s?

• Can we use the values of one r.v. to predict the other r.v.?

Observational Studies vs. Designed Experiments

• In observational studies, we simply measure or observe both variables on a set of sampled individuals.

• In a designed experiment, we manipulate the predictors (*factors*), setting them at specific values of interest. We then observe what values of the response correspond to the fixed predictor values.

Example 1 (Table 6.1): We observe the Rockwell Hardness (X) and Young's modulus (Y) for seven highdensity metals. The resulting data were:

 X:
 41
 44
 40
 43
 15
 40

 Y:
 310
 340
 380
 317
 413
 62
 119

Example 2 (Table 6.3): A chemical engineering class studied the effect of the reflux ratio (X) on the ethanol concentration (Y) of an ethanol-water distillation. For a variety of settings of the reflux ratio, the ethanol concentration was measured:

X:	20	30	40	50	60
Y:	0.446	0.601	0.786	0.928	0.950

We assume there is random error in the observed response values, implying a <u>probabilistic</u> relationship between the 2 variables.

• Often we assume a straight-line relationship between two variables.

• This is known as simple linear regression.

$$Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

 $Y_i = i$ th response value

 β_0 = Intercept of regression line

 $x_i = i$ th predictor value $\beta_1 =$ slope of regression line

 $\varepsilon_i = i$ th random error component

• We assume the random errors ε_i have mean 0 (and variance σ^2), so that $E(Y) = \beta_0 + \beta_1 x$.

• Typically, in practice, β_0 and β_1 are unknown parameters. We estimate them using the sample data.

Fitting the Model (Least Squares Method)

• If we gather data (X_i, Y_i) for several individuals, we can use these data to estimate β_0 and β_1 and thus estimate the linear relationship between *Y* and *X*.

• First step: Decide if a straight-line relationship between *Y* and *X* makes sense.

Plot the bivariate data using a scatter plot.

```
R code:
> x <- c(20,30,40,50,60)
> y <- c(.446,.601,.786,.928,.950)
> plot(x,y,pch=19)
```

• Once we settle on the "best-fitting" regression line, its equation gives a predicted Y-value for any new X-value.

• How do we decide, given a data set, which line is the best-fitting line?

Note that usually, no line will go through all the points in the data set.

For each point, the <u>residual</u> = (Some positive residuals, some negative residuals)

We want the line that makes these errors as small as possible (so that the line is "close" to the points).

<u>Least-squares method</u>: We choose the line that minimizes the sum of all the <u>squared</u> residuals (SS_{res}).

 $SS_{res} =$

Least squares prediction equation:

 $\hat{Y} = b_0 + b_1 X$

where b_0 and b_1 are the estimates of β_0 and β_1 that produce the best-fitting line in the least squares sense.

Formulas for b_0 and b_1 :

Estimated slope and intercept:

$$b_{1} = \frac{SS_{xy}}{SS_{xx}} \text{ and } b_{0} = \overline{Y} - b_{1}\overline{X}$$

where $SS_{xy} = \sum X_{i}Y_{i} - \frac{(\sum X_{i})(\sum Y_{i})}{n}$ and
 $SS_{xx} = \sum X_{i}^{2} - \frac{(\sum X_{i})^{2}}{n}$

and *n* = the number of observations.

Example (see Table 6.4):

 $\sum Y_i = \sum X_i^2 =$ $\sum X_i = \sum X_i Y_i =$ $SS_{xy} =$

 $SS_{xx} =$

R code: > x <- c(20,30,40,50,60) > y <- c(.446,.601,.786,.928,.950) > lm(y ~ x) **Derivation of Formulas for** b_0 **and** b_1 **:**

Recall that $SS_{res} =$

To minimize the SS_{res} with respect to b_0 and b_1 :

Interpretations:

Slope:

Intercept:

Example:

Avoid extrapolation: predicting/interpreting the regression line for X-values outside the range of X in the data set.

Model Assumptions

• **Recall model equation:** $Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$

• To perform inference about our regression line, we need to make certain assumptions about the random error component, ε_i . We assume:

- (1) The mean of ε_i is 0. (In the long run, the values of the random errors average zero.)
- (2) The variance of the probability distribution of ε_i is constant for all values of *X*. We denote the variance of ε_i by σ^2 .
- (3) The probability distribution of ε_i is normal.
- (4) The values of ε_i for any two observed Y-values are independent the value of ε_i has no effect on the value of ε_j for the *i*th and *j*th Y-values.

Picture:

We will discuss later how to check these assumptions for a particular data set.

Estimating σ^2

Typically the error variance σ^2 is unknown.

An unbiased estimate of σ^2 is the mean squared residual (MS_{res}).

 $MS_{res} = SS_{res} / (n-2)$

where $SS_{res} = SS_{yy} - b_1 SS_{xy}$

and
$$SS_{yy} = \sum Y_i^2 - \frac{(\sum Y_i)^2}{n}$$

Note that an estimate of σ is

$$\sqrt{MS_{res}} = \sqrt{\frac{SS_{res}}{n-2}}$$

Testing the Usefulness of the Model

For the SLR model, $E(Y) = \beta_0 + \beta_1 x$.

Note: *X* is completely useless in helping to predict or explain *Y* if and only if $\beta_1 = 0$.

So to test the usefulness of the model for predicting *Y*, we test:

If we reject H_0 and conclude H_a is true, then we conclude that *X* does provide information for the prediction of *Y*.

Picture:

Recall that the estimate b_1 is a statistic that depends on the sample data.

This b_1 has a sampling distribution.

If our four SLR assumptions hold, the sampling distribution of b_1 is normal with mean β_1 and standard deviation which we estimate by

Under H₀: $\beta_1 = 0$, the statistic $\frac{b_1}{\sqrt{MS_{res} / SS_{xx}}}$ has a t-distribution with n - 2 d.f.

Test about the Slope

<u>One-Taile</u>	Two-Tailed Test	
H ₀ : $\beta_1 = 0$	H ₀ : $β_1 = 0$	$\mathbf{H}_0: \boldsymbol{\beta}_1 = 0$
$H_a: \beta_1 < 0$	$H_a: \beta_1 > 0$	$\mathbf{H}_{\mathbf{a}}$: $\beta_1 \neq 0$
<u>Test statistic</u> :	$\boldsymbol{t} = \frac{b_1}{\sqrt{MS_{res} / SS}}$	 xx

, n-2 $t > \mathbf{t}_{\alpha/2} \text{ or } t < -\mathbf{t}_{\alpha/2}$
,

<u>P-value</u>: left tail area outside *t*

right tail area 2*(tail area outside t) outside t

Example: In the ethanol example, recall b_1 = Is the real β_1 significantly greater than 0? (Use $\alpha = .05$.)

A $100(1 - \alpha)$ % Confidence Interval for the true slope β_1 is given by:

where $t_{\alpha/2}$ is based on n - 2 d.f.

In our example, a 95% CI for β_1 is:

R code:

> x <- c(20,30,40,50,60)
> y <- c(.446,.601,.786,.928,.950)
> summary(lm(y ~ x))
> plot(x, y, pch=19); abline(lm(y ~ x))

Correlation

The scatterplot gives us a general idea about whether there is a linear relationship between two variables.

More precise: The <u>coefficient of correlation</u> (denoted r) is a numerical measure of the <u>strength</u> and <u>direction</u> of the <u>linear</u> relationship between two variables.

Formula for *r* (the correlation coefficient between two variables *X* and *Y*):

$$r = \frac{SS_{xy}}{\sqrt{SS_{xx}SS_{yy}}}$$

Most computer packages will also calculate the correlation coefficient.

Interpreting the correlation coefficient:

• Positive *r* => The two variables are <u>positively</u> <u>associated</u> (large values of one variable correspond to large values of the other variable)

• Negative *r* => The two variables are <u>negatively</u> <u>associated</u> (large values of one variable correspond to small values of the other variable)

• *r* = 0 => <u>No linear association</u> between the two variables.

Note: $-1 \le r \le 1$ <u>always</u>.

How far *r* is from 0 measures the *strength* of the linear relationship:

• *r* nearly 1 => Strong positive relationship between the two variables

• *r* nearly -1 => Strong negative relationship between the two variables

```
• r near 0 => Weak relationship between the two variables
```

Pictures:

Example (Rockwell hardness / Young's modulus data):

```
> rock <- c(41,41,44,40,43,15,40)
> young <- c(310,340,380,317,413,62,119)
> cor(rock, young)
[1] 0.7759845
```

Interpretation?

<u>Notes</u>: (1) Correlation makes no distinction between predictor and response variables.

(2) Variables must be numerical to calculate *r*.

(3) Correlation only measures the *linear* association between two variables, <u>not</u> any nonlinear relationship.

The square of the correlation coefficient is called the coefficient of determination, R^2 .

Interpretation: R^2 represents the proportion of sample variability in Y that is explained by its linear relationship with X.

$$R^2 = 1 - \frac{SS_{res}}{SS_{yy}}$$
 (*R*² always between 0 and 1)

For the Rockwell hardness / Young's modulus data example, $R^2 =$

Interpretation:

For the reflux ratio / ethanol concentration data example, $R^2 =$

Interpretation:

Estimation and Prediction with the Regression Model

Major goals in using the regression model:
(1) Determining the linear relationship between *Y* and *X* (accomplished through inferences about β₁)

(2) Estimating the mean value of *Y*, denoted E(*Y*), for a particular value of *X*.

Example: Among all columns with reflux ratio 35 units, what is the estimated mean ethanol concentration?

(3) Predicting the value of *Y* for a particular value of *X*. Example: For a "new" column having reflux ratio 35 units, what is the predicted ethanol concentration?

• The point estimate for these last two quantities is the same; it is:

Example:

• However, the variability associated with these point estimates is very different.

• Which quantity has more variability, a single Y-value or the mean of many Y-values?

This is seen in the following formulas:

100 $(1 - \alpha)$ % Confidence Interval for the mean value of *Y* at *X* = x_0 :

where $t_{\alpha/2}$ based on n - 2 d.f.

100(1 – α)% <u>Prediction Interval</u> for the an individual new value of *Y* at *X* = x_0 :

where $t_{\alpha/2}$ based on n - 2 d.f.

The extra "1" inside the square root shows the prediction interval is wider than the CI, although they have the same center.

Note: A "Prediction Interval" attempts to contain a random quantity, while a confidence interval attempts to contain a (fixed) parameter value.

The variability in our estimate of E(Y) reflects the fact that we are merely estimating the unknown β_0 and β_1 .

The variability in our prediction of the new Y includes that variability, <u>plus</u> the natural variation in the Yvalues.

Example (ethanol concentration data): 95% CI for E(Y) with X = 35:

> x <- c(20,30,40,50,60)
> y <- c(.446,.601,.786,.928,.950)
> predict(lm(y ~ x), data.frame(x = c(35)),
interval="confidence", level=0.95)

95% PI for a new *Y* having *X* = **35**:

```
> predict(lm(y ~ x), data.frame(x = c(35)),
interval="prediction", level=0.95)
```