STAT 509 - Sections 6.1-6.2: Linear Regression

- Mostly we have studied the behavior of a single random variable.
- Often, however, we gather data on two random variables.
Response Variable (\boldsymbol{Y}): Measures the major outcome of interest in the study (also called the dependent variable). Independent Variable (X): Another variable whose value explains, predicts, or is associated with the value of the response variable (also called the predictor or the regressor).
- We wish to determine: Is there a relationship between the two r.v.'s?
- Can we use the values of one r.v. to predict the other r.v.?

Observational Studies vs. Designed Experiments

- In observational studies, we simply measure or observe both variables on a set of sampled individuals.
- In a designed experiment, we manipulate the predictors (factors), setting them at specific values of interest. We then observe what values of the response correspond to the fixed predictor values.

Example 1 (Table 6.1): We observe the Rockwell Hardness (X) and Young's modulus (Y) for seven highdensity metals. The resulting data were:

$\mathrm{X}:$	41	41	44	40	43	15	40
$\mathrm{Y}:$	310	340	380	317	413	62	119

Example 2 (Table 6.3): A chemical engineering class studied the effect of the reflux ratio (X) on the ethanol concentration (Y) of an ethanol-water distillation. For a variety of settings of the reflux ratio, the ethanol concentration was measured:

X:	20	$\mathbf{3 0}$	$\mathbf{4 0}$	50	$\mathbf{6 0}$
Y:	0.446	$\mathbf{0 . 6 0 1}$	$\mathbf{0 . 7 8 6}$	$\mathbf{0 . 9 2 8}$	$\mathbf{0 . 9 5 0}$

We assume there is random error in the observed response values, implying a probabilistic relationship between the 2 variables.

- Often we assume a straight-line relationship between two variables.
- This is known as simple linear regression.

$$
Y_{i}=\beta_{0}+\beta_{1} x_{i}+\varepsilon_{i}
$$

$Y_{i}=i$ th response value $\quad \beta_{0}=$ Intercept of regression line
$x_{i}=i$ th predictor value $\quad \beta_{1}=$ slope of regression line $\varepsilon_{i}=i$ th random error component

- We assume the random errors ε_{i} have mean 0 (and variance σ^{2}), so that $E(Y)=\beta_{0}+\beta_{1} x$.
- Typically, in practice, β_{0} and β_{1} are unknown parameters. We estimate them using the sample data.

Fitting the Model (Least Squares Method)

- If we gather data $\left(X_{i}, Y_{i}\right)$ for several individuals, we can use these data to estimate β_{0} and β_{1} and thus estimate the linear relationship between Y and X.
- First step: Decide if a straight-line relationship between Y and X makes sense.

Plot the bivariate data using a scatter plot.

R code:
$>x<-c(20,30,40,50,60)$
$>y<-c(.446, .601, .786, .928, .950)$
$>\operatorname{plot}(x, y, p c h=19)$

- Once we settle on the "best-fitting" regression line, its equation gives a predicted Y-value for any new \mathbf{X}-value.
- How do we decide, given a data set, which line is the best-fitting line?

Note that usually, no line will go through all the points in the data set.

For each point, the residual = (Some positive residuals, some negative residuals)

We want the line that makes these errors as small as possible (so that the line is "close" to the points).

Least-squares method: We choose the line that minimizes the sum of all the squared residuals ($\mathrm{SS}_{\mathrm{res}}$).
$\mathbf{S S}_{\text {res }}=$
Least squares prediction equation:
$\hat{Y}=b_{0}+b_{1} X$
where b_{0} and b_{1} are the estimates of $\boldsymbol{\beta}_{0}$ and β_{1} that produce the best-fitting line in the least squares sense.

Formulas for b_{0} and b_{1} :

Estimated slope and intercept:

$$
b_{1}=\frac{S S_{x y}}{S S_{x x}} \text { and } b_{0}=\bar{Y}-b_{1} \bar{X}
$$

where $S S_{x y}=\sum X_{i} Y_{i}-\frac{\left(\sum X_{i}\right)\left(\sum Y_{i}\right)}{n}$ and

$$
S S_{x x}=\sum X_{i}^{2}-\frac{\left(\sum X_{i}\right)^{2}}{n}
$$

and $\boldsymbol{n}=$ the number of observations.
Example (see Table 6.4):
$\sum Y_{i}=\quad \sum X_{i}^{2}=$
$\sum X_{i}=\quad \sum X_{i} Y_{i}=$
$\mathbf{S S}_{\mathrm{xy}}=$
$\mathbf{S S}_{\mathrm{xx}}=$

R code:
$>x<-c(20,30,40,50,60)$
$>y<-c(.446, .601, .786, .928, .950)$
$>\operatorname{lm}(\mathrm{y} \sim \mathrm{x})$

Derivation of Formulas for b_{0} and b_{1} :

Recall that $\mathbf{S S}_{\text {res }}=$

To minimize the $\mathbf{S S}_{\text {res }}$ with respect to b_{0} and b_{1} :

Interpretations:

Slope:

Intercept:

Example:

Avoid extrapolation: predicting/interpreting the regression line for X-values outside the range of X in the data set.

Model Assumptions

- Recall model equation: $Y_{i}=\beta_{0}+\beta_{1} x_{i}+\varepsilon_{i}$
- To perform inference about our regression line, we need to make certain assumptions about the random error component, ε_{i}. We assume:
(1) The mean of ε_{i} is 0 . (In the long run, the values of the random errors average zero.)
(2) The variance of the probability distribution of ε_{i} is constant for all values of X. We denote the variance of ε_{i} by σ^{2}.
(3) The probability distribution of ε_{i} is normal.
(4) The values of ε_{i} for any two observed Y-values are independent - the value of ε_{i} has no effect on the value of ε_{j} for the i th and j th Y-values.

Picture:

We will discuss later how to check these assumptions for a particular data set.

Estimating σ^{2}

Typically the error variance σ^{2} is unknown.
An unbiased estimate of σ^{2} is the mean squared residual ($\mathbf{M S}_{\text {res }}$).
$\mathbf{M S}_{\text {res }}=\mathbf{S S}_{\text {res }} /(\boldsymbol{n} \mathbf{- 2})$
where $\mathbf{S S}_{\mathrm{res}}=\mathbf{S S}_{\mathbf{y y}}-b_{1} \mathbf{S S}_{\mathrm{xy}}$
and $S S_{y y}=\sum Y_{i}^{2}-\frac{\left(\sum Y_{i}\right)^{2}}{n}$

Note that an estimate of σ is

$$
\sqrt{M S_{r e s}}=\sqrt{\frac{S S_{r e s}}{n-2}}
$$

Testing the Usefulness of the Model
For the SLR model, $\mathrm{E}(\boldsymbol{Y})=\boldsymbol{\beta}_{0}+\beta_{1} x$.
Note: X is completely useless in helping to predict or explain Y if and only if $\beta_{1}=0$.

So to test the usefulness of the model for predicting Y, we test:

If we reject H_{0} and conclude H_{a} is true, then we conclude that X does provide information for the prediction of \boldsymbol{Y}.

Picture:

Recall that the estimate b_{1} is a statistic that depends on the sample data.
This b_{1} has a sampling distribution.
If our four SLR assumptions hold, the sampling distribution of b_{1} is normal with mean $\boldsymbol{\beta}_{1}$ and standard deviation which we estimate by

Under $\mathbf{H}_{\mathbf{0}}: \boldsymbol{\beta}_{\mathbf{1}}=\mathbf{0}$, the statistic $\frac{b_{1}}{\sqrt{M S_{r e s} / S S_{x x}}}$ has a \mathbf{t}-distribution with $\boldsymbol{n} \mathbf{- 2}$ d.f.

Test about the Slope

Rejection region:
$t<-\mathrm{t}_{\alpha, \mathrm{n}-2} \quad t>\mathrm{t}_{\alpha, \mathrm{n}-2} \quad t>\mathrm{t}_{\alpha / 2}$ or $t<-\mathrm{t}_{\alpha / 2}$
P-value:
left tail area
outside t
right tail area $2 *($ tail area outside $t)$ outside t

Example: In the ethanol example, recall $b_{1}=$ Is the real β_{1} significantly greater than 0 ?
(Use $\alpha=.05$.)

A $100(1-\alpha) \%$ Confidence Interval for the true slope β_{1}

 is given by:where $t_{\alpha / 2}$ is based on $\boldsymbol{n}-2$ d.f.

In our example, a 95\% CI for $\boldsymbol{\beta}_{1}$ is:

R code:
$>x<-c(20,30,40,50,60)$
$>y<-c(.446, .601, .786, .928, .950)$
$>\operatorname{summary}(\operatorname{lm}(y \sim x))$
> plot(x, y, pch=19); abline(lm(y ~ x))

Correlation

The scatterplot gives us a general idea about whether there is a linear relationship between two variables.

More precise: The coefficient of correlation (denoted r) is a numerical measure of the strength and direction of the linear relationship between two variables.

Formula for \boldsymbol{r} (the correlation coefficient between two variables X and Y):
$r=\frac{S S_{x y}}{\sqrt{S S_{x x} S S_{y y}}}$
Most computer packages will also calculate the correlation coefficient.

Interpreting the correlation coefficient:

- Positive r => The two variables are positively associated (large values of one variable correspond to large values of the other variable)
- Negative r => The two variables are negatively associated (large values of one variable correspond to small values of the other variable)
- $r=0 \Rightarrow$ No linear association between the two variables.

Note: $-1 \leq r \leq 1$ always.

How far r is from 0 measures the strength of the linear relationship:

- r nearly 1 => Strong positive relationship between the two variables
- r nearly $\mathbf{- 1}=>$ Strong negative relationship between the two variables
- r near $0=>$ Weak relationship between the two variables

Pictures:

Example (Rockwell hardness / Young's modulus data):
$>$ rock <- $c(41,41,44,40,43,15,40)$
$>$ young <- c(310,340, 380, 317,413, 62, 119)
$>$ cor (rock, young)
[1] 0.7759845

Interpretation?

Notes: (1) Correlation makes no distinction between predictor and response variables.
(2) Variables must be numerical to calculate r.
(3) Correlation only measures the linear association between two variables, not any nonlinear relationship.

The square of the correlation coefficient is called the coefficient of determination, \boldsymbol{R}^{2}.

Interpretation: $\boldsymbol{R}^{\mathbf{2}}$ represents the proportion of sample variability in Y that is explained by its linear relationship with X.

$$
R^{2}=1-\frac{S S_{r e s}}{S S_{y y}} \quad\left(\boldsymbol{R}^{2} \text { always between } 0 \text { and } \mathbf{1}\right)
$$

For the Rockwell hardness / Young's modulus data example, $R^{2}=$

Interpretation:

For the reflux ratio / ethanol concentration data example, $R^{2}=$

Interpretation:

Major goals in using the regression model:
(1) Determining the linear relationship between Y and X (accomplished through inferences about $\boldsymbol{\beta}_{1}$)
(2) Estimating the mean value of \boldsymbol{Y}, denoted $\mathrm{E}(\boldsymbol{Y})$, for a particular value of X.
Example: Among all columns with reflux ratio 35 units, what is the estimated mean ethanol concentration?
(3) Predicting the value of Y for a particular value of X. Example: For a "new" column having reflux ratio 35 units, what is the predicted ethanol concentration?

- The point estimate for these last two quantities is the same; it is:

Example:

- However, the variability associated with these point estimates is very different.
- Which quantity has more variability, a single Y-value or the mean of many Y-values?

This is seen in the following formulas:
$100(1-\alpha) \%$ Confidence Interval for the mean value of Y at $X=x_{0}$:
where $t_{\alpha / 2}$ based on $\boldsymbol{n} \mathbf{- 2}$ d.f.
$100(1-\alpha) \%$ Prediction Interval for the an individual new value of Y at $X=x_{0}$:
where $t_{\alpha / 2}$ based on $\boldsymbol{n}-2$ d.f.
The extra " 1 " inside the square root shows the prediction interval is wider than the CI, although they have the same center.

Note: A "Prediction Interval" attempts to contain a random quantity, while a confidence interval attempts to contain a (fixed) parameter value.

The variability in our estimate of $\mathrm{E}(\boldsymbol{Y})$ reflects the fact that we are merely estimating the unknown β_{0} and β_{1}.

The variability in our prediction of the new Y includes that variability, plus the natural variation in the Y values.

Example (ethanol concentration data):
$\mathbf{9 5 \%}$ CI for $\mathrm{E}(\boldsymbol{Y})$ with $X=35$:

```
> x <- c(20,30,40,50,60)
> y <- c(.446,.601,.786,.928,.950)
> predict(lm(y ~ x), data.frame(x = c(35)),
interval="confidence", level=0.95)
```

95\% PI for a new Y having $X=35$:

```
> predict(lm(y ~ x), data.frame(x = c(35)),
interval="prediction", level=0.95)
```

