STAT 509 - Sections 4.4,4.8 - More Inference

- We can do inference (CIs, hypothesis tests) about parameters other than a population mean.

Confidence Interval for a Proportion

- Suppose our data tell us only whether each observation has a certain characteristic.
- We want to know how much of the population has that characteristic.
- The proportion (always between 0 and 1) of individuals with a characteristic is the same as the probability of a random individual having the characteristic.

Estimating proportion is equivalent to estimating the binomial probability p.

Point estimate of \boldsymbol{p} is the sample proportion:

- Give every sampled individual a 1 (if it has the characteristic) or 0 (if it lacks it).
Note $\hat{p}=\frac{y}{n}$ is a type of sample average (of 0 's and 1 's), so CLT tells us that when sample size is large, sampling distribution of \hat{p} is approximately normal.

For large \boldsymbol{n} :
$100(1-\alpha) \%$ CI for p is:

How large does n need to be?

Example 1: We wish to estimate the probability that a randomly selected part in a shipment will be defective. Take a random sample of $\mathbf{1 7 9}$ parts, and find 14 defective parts. Find a 95% CI for p.

Check:

Hypothesis Tests about a Population Proportion

We often wish to test whether a population proportion p equals a specified value.

Example 1 again: We wish to test whether the proportion of defective parts in a shipment is less than 0.10 .

We test:

Recall: The sample proportion \hat{p} is approximately
$\mathbf{N}\left(p, \sqrt{\frac{p q}{n}}\right)$ for large \boldsymbol{n}, so our test statistic for testing $\mathrm{H}_{0}: p=p_{0}$
has a standard normal distribution when H_{0} is true (when p really is p_{0}).

Rules for one-tailed tests about population proportion

$$
\begin{array}{lll}
\mathbf{H}_{0}: p=p_{0} & & \mathbf{H}_{0}: p=p_{0} \\
\mathbf{H}_{\mathrm{a}}: p<\mathbf{p}_{0} & \text { or } & \mathbf{H}_{\mathrm{a}}: p>p_{0}
\end{array}
$$

Test statistic: $\quad z=\frac{\hat{p}-p_{0}}{\sqrt{\frac{p_{0} q_{0}}{n}}}$
Rejection
$\mathbf{z}<-\mathbf{z}_{\alpha}$
$\mathbf{z}>\mathbf{Z}_{\boldsymbol{\alpha}}$
Region:

Rules for two-tailed tests about population proportion

$$
\mathbf{H}_{0}: p=p_{0}
$$

$$
\mathbf{H}_{\mathbf{a}}: \mathbf{p} \neq \mathbf{p}_{0}
$$

Test statistic: $\quad z=\frac{\hat{p}-p_{0}}{\sqrt{\frac{p_{0} q_{0}}{n}}}$
Rejection
$\mathrm{z}\left\langle-\mathrm{z}_{\alpha / 2}\right.$ or z$\rangle \mathrm{z}_{\alpha / 2}$ (both tails)
Region:
Assumptions of test (need large sample):
Need:

Example 1:

Test $\mathrm{H}_{0}: p=0.10$ vs. $\mathrm{H}_{\mathrm{a}}: p<0.10$ using $\alpha=.01$.
Take a random sample of $\mathbf{1 7 9}$ parts, and find 14 defective parts.

In R:
> prop.test(14,179, p=0.10, alternative="less", correct=F)

Example 1(a): What if we had wanted to test whether the proportion of defective parts was different from 0.10 ?

In R: > prop.test $(14,179, p=0.10$, alternative="two.sided", correct=F)

Section 4.8 - Inference about Variances

Confidence Interval for the Variance σ^{2} (or for s.d. σ)

Recall that if the data are normally distributed, $\frac{(n-1) s^{2}}{\sigma^{2}}$ has a χ^{2} sampling distribution with $(n-1)$ d.f. This can be used to develop a $(1-\alpha) 100 \%$ CI for σ^{2} :

Note: This procedure is not robust! It is not appropriate if the data are not normal. Be sure to check the normality assumption!

- We can also derive a set of hypothesis tests (based on the χ^{2} distribution) for testing whether the population variance equals some specified value.

Rules for one-tailed tests about population variance

$$
\begin{array}{lll}
\mathbf{H}_{0}: \sigma^{2}=\sigma_{0}^{2} & & \mathbf{H}_{0}: \sigma^{2}=\sigma_{0}^{2} \\
\mathbf{H}_{\mathrm{a}}: \sigma^{2}<\sigma_{0}^{2} & \text { or } & \mathbf{H}_{\mathrm{a}}: \sigma^{2}>\sigma_{0}^{2}
\end{array}
$$

Test statistic: $\quad \chi^{2}=\frac{(n-1) s^{2}}{\sigma_{0}^{2}}$

Rejection
$\chi^{2}<\chi_{n-1,1-\alpha}^{2}$
$\chi^{2}>\chi^{2}{ }_{n-1, \alpha}$ Region:

Rules for two-tailed tests about population variance

$$
\begin{aligned}
& \mathbf{H}_{0}: \sigma^{2}=\sigma_{0}^{2} \\
& \mathbf{H}_{\mathrm{a}}: \sigma^{2} \neq \sigma^{2}
\end{aligned}
$$

Test statistic: $\quad \chi^{2}=\frac{(n-1) s^{2}}{\sigma_{0}^{2}}$
Rejection $\chi^{2}<\chi^{2}{ }_{n-1,1-\alpha / 2}$ or $\chi^{2}>\chi_{n-1, \alpha / 2}^{2}$ (both tails) Region:

Assumptions of test:

How to check this?

Example: A random sample of 10 lubricant containers yields $s=0.24585$ liters, so $s^{2}=$ (Assume normally distributed data) Find 95\% CI for $\sigma^{\mathbf{2}}$.
$\mathbf{9 5 \%}$ CI for σ :
Testing whether the true variance is greater than 0.03:

- Recall that if we have independent samples from two normally distributed populations (having variances $\sigma_{1}{ }^{2}$ and $\sigma_{2}{ }^{2}$), then
$\frac{s_{1}^{2} / \sigma_{1}^{2}}{s_{2}^{2} / \sigma_{2}^{2}}$ has an \mathbf{F} sampling distribution with $\left(\boldsymbol{n}_{\boldsymbol{1}}-\mathbf{1}\right)$ numerator and $\left(n_{2}-1\right)$ denominator d.f.
- Therefore, if $\sigma_{1}{ }^{2}=\sigma_{2}{ }^{2}$, then $s_{1}{ }^{2} / s_{2}{ }^{2}$ has an Fdistribution.
- Then a ratio of sample variances can serve as the test statistic for testing the hypotheses:
- Again, this procedure is not robust and is not appropriate unless both data sets are from normal populations.

Example: If we have two samples from normal populations, we can test for equal variances in R :

```
> Lul <- c(10.2, 9.7, 10.1, 10.3, 10.1, 9.8, 9.9,
10.4, 10.3, 9.8)
> Lu2 <- c(9.78, 9.79, 10.33, 9.91, 9.38, 10.09,
10.17, 9.44)
> qqnorm(Lu1) # checking normality assumption
> qqnorm(Lu2) # checking normality assumption
> var.test(Lu1, Lu2)
```

