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Abstract

We study a general algorithm to improve accuracy in cluster anal-

ysis that employs the James-Stein shrinkage effect in k-means cluster-

ing. We shrink the centroids of clusters toward the overall mean of all

data using a James-Stein-type adjustment, and then the James-Stein

shrinkage estimators act as the new centroids in the next clustering

iteration until convergence. We compare the shrinkage results to the

traditional k-means method. Monte Carlo simulation shows that the

magnitude of the improvement depends on the within-cluster vari-

ance and especially on the effective dimension of the covariance ma-

trix. Using the Rand index, we demonstrate that accuracy increases

significantly in simulated data and in a real data example.
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1 Introduction

Cluster analysis is a method of creating groups of objects, so that objects

in the same group are similar and objects in different groups are distinct

(Gan et al., 2007). Clustering and classification have a long history and

have played an important role in many scientific disciplines. Most current

statistical software has specific functions or procedures to perform cluster

analysis.

There are several main classes of methods in cluster analysis, including

hierarchical clustering, partitional clustering, and model-based clustering. In

this paper, the primary emphasis is on the most popular partitioning method,

k-means clustering. MacQueen (1967) introduced the k-means method as an

alternative to hierarchical clustering methods (see also Hartigan and Wong,

1979). This method is more efficient than hierarchical clustering, especially

for large data sets and high-dimensional data sets.

The basic algorithm for the k-means method is as follows:

1. Specify the number of clusters k and then randomly select k observa-

tions to initially represent the k cluster centers. Each observation is

assigned to the cluster corresponding to the closest of these randomly

selected objects to form k clusters.

2. The multivariate means (or “centroids”) of the clusters are calculated,

and each observation is reassigned (based on the new means) to the

cluster whose mean is closest to it to form k new clusters.

3. Repeat step 2, until the algorithm stops when the means of the clusters

are constant from one iteration to the next.

In the traditional k-means approach, “closeness” to the cluster centers is
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defined in terms of squared Euclidean distance, defined by:

d2

E(x, x̄c) = (x − x̄c)
′

(x − x̄c) =
∑

k

(xik − x̄ck)
2,

where x = (x1, . . . , xp)
′ is any particular observation and x̄c is the centroid

for, say, cluster c.

Compared to hierarchical clustering, the k-means method is more effi-

cient. Tan (2005) showed that if the number of clusters k is much smaller

than the number of observations n, the computation time will be linearly

related to n, while the computation time of a hierarchical clustering will be

related to n2. This result makes the k-means method more useful for large

data than hierarchical methods. In practice, k-means cluster analyses can be

performed readily by many statistical software packages, the kmeans function

in R (R Development Core Team, 2009) and the FASTCLUS procedure in SAS

being two examples.

A number of alterations to the k-means algorithm have been developed

in the statistical literature. Many previous approaches have sought to make

the clustering more robust to outliers than the ordinary k-means algorithm,

which relies on least-squares principles. For example, Kaufman and Rousseeuw

(1987) developed the well-known k-medoids method, implemented in R by

the function pam. Cuesta-Albertos et al. (1997) introduced trimmed k-means,

in which a certain proportion of outlying objects were removed from the clus-

tering. This trimming method was further developed by Cuesta-Albertos et

al. (2008) and Garćıa-Escudero et al. (2009).

In addition, many authors have proposed implementations of K-means

incorporating variable selection. For example, Krzanowski and Hand (2009)

introduced a screening method to quickly select useful variables prior to

clustering. Another variable selection method was proposed by Brusco and

Cradit (2001). Variable weighting (e.g., DeSarbo et al., 1984; Makarenkov

3



and Legendre, 2001) may achieve similar benefits to variable selection. Stein-

ley and Brusco (2008a) introduced a variable selection method based on a

“variance-to-range ratio” standardization. See Steinley and Brusco (2008b)

for a comparison of the performances of eight variable selection or weight-

ing methods. Steinley (2006) provides an excellent comprehensive review of

the k-means method, including the properties and a multitude of variations

thereof.

A distinctive aspect of our method is that it involves shrinkage, and there-

fore handles generally the situation of when high-noise multivariate data is

to be clustered, as opposed to the specific situation of a few outlying objects.

We would not specifically classify the proposed method as a robust method

(characterized by a breakdown point in the presence of individual outliers).

However, we do propose that this method significantly improves cluster recov-

ery compared to traditional K-means in situations where the within-cluster

variability is relatively high, when cluster recovery is especially difficult. An

insightful related discussion is given in Steinley and Brusco (2008a), who

debated whether the performance of a clustering algorithm should be judged

based on how well the method recovered the underlying cluster structure or

how closely the method came to optimizing an objective function of interest.

These two approaches could produce different comparative conclusions. In

this paper, however, we will focus on judging performance in cluster recovery.

We present in this paper a method to incorporate James-Stein shrinkage

into the k-means algorithm. Section 2 reviews some fundamental facts about

James-Stein estimation. In Section 3, we introduce the details of our method.

Section 4 describes a basic simulation study that displays the improvement

in clustering accuracy our method obtains relative to ordinary k-means, and

describes how this improvement depends on characteristics of the data such

as the within-cluster variance and the effective dimension of the covariance

matrix. In Section 5 we include some supplementary simulations that con-

4



sider specialized covariance structures. We illustrate the method on a real

data set in Section 6, and summarize the results with a brief discussion in

Section 7.

2 Background on James-Stein Estimation

In recent decades, the James-Stein approach has been widely used in the

problem of statistical estimation. It originated in the context of point esti-

mation of a multivariate normal mean.

2.1 Original James-Stein Estimator

For multivariate normal data, the sample mean maximizes the likelihood

function and is the uniformly minimum variance unbiased estimator (UMVUE).

However, James and Stein (1961) showed that the sample mean is inadmis-

sible and their estimator, later named the James-Stein estimator, dominates

the sample mean when the dimension of the data p is larger than 2.

Let θ = (θ1, . . . , θp)
′ be a p-dimensional unknown mean parameter, and let

X = (X1, . . . , Xp)
′ be a p-dimensional observation such that X ∼ N(θ, Ip),

and consider finding the best estimator θ̂ based on the observation X, where

θ̂ = δ(X).

Under squared-error loss, the performance of an estimator θ̂ may be

judged by the risk function

R(θ, θ̂) = MSE(θ̂) = E[L(θ, θ̂)].

Standard inference results show that the maximum likelihood estimator (MLE),

the best linear unbiased estimator, and the least squares estimator all equal

the sample mean, but Stein discovered a interesting and surprising phe-

nomenon: If p ≤ 2, then δ0(X) = X is admissible; however, if p > 2,
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δ0(X) = X is inadmissible, and

δJS(X) =

(

1 −
p − 2

‖X‖2

)

X

dominates the MLE. Since δJS(X) can be thought of as a weighted average

of 0 and X, the James-Stein estimator is also called a shrinkage estimator:

δJS(X) shrinks X toward 0.

In certain contexts, it makes sense to shrink the usual estimator toward

some meaningful nonzero quantity, and James-Stein-type estimators were

developed in many such contexts (see, e.g., Lehmann and Casella, 1998,

Section 5.6 for examples). Our method will be involve a shrinkage estimator

of this nature.

2.2 General James-Stein Estimator

The original James-Stein estimator was obtained when X ∼ N(θ, Ip). Bock

(1975) derived a general James-Stein estimator when the elements of X may

be correlated and have different variances.

Suppose an observation X is distributed according to the p-dimensional

multivariate normal distribution with mean vector θ and covariance matrix

Q, where Q is a symmetric positive definite covariance matrix. Bock showed

that a general James-Stein estimator in this setting is

δJS(X) =

(

1 −
p̂ − 2

XTQ−1X

)

X

where p̂ is the effective dimension of Q, which equals the trace of Q divided

by the maximum eigenvalue of Q:

p̂ =
tr(Q)

λmax(Q)
.
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Bock showed that this general James-Stein estimator dominates the MLE

X as long as p̂ > 2. Note that when Q = Ip, we have p̂ = p, the effective

dimension becomes the actual dimension, and the general James-Stein esti-

mator reduces to the original James-Stein estimator.

2.3 Positive-Part James-Stein Estimator

The fact that the shrinkage coefficient

1 −
p̂ − 2

XTQ−1X

may be negative is an inconvenient aspect of the original James-Stein esti-

mator, and it can be shown that a restricted “positive-part” estimator (see

Baranchik, 1964) is superior. For any scalar y, let y+ be the nonnegative

part of y:

y+ =







y, y ≥ 0

0, y < 0.

Then the positive-part James-Stein estimator is

δPJS(X) =

(

1 −
p̂ − 2

XTQ−1X

)+

X.

As shown in, for example, Lehmann and Casella (1998) and Richards (1999),

the positive-part James-Stein estimator dominates the original James-Stein

estimator, and we will use a positive-part James-Stein estimator within our

approach.

3 Methodology

The James-Stein estimator has been widely applied in engineering and eco-

nomics. However, it has attracted little attention in cluster analysis. Here,

7



we want to use James-Stein-type estimators as centroids in a k-means clus-

ter analysis by shrinking the cluster sample means toward the overall sample

mean.

In certain situations, the idea of shrinking is natural in cluster analysis.

For instance, Hitchcock et al. (2007) and Hitchcock and Chen (2008) showed

that shrinkage methods could aid in the clustering of functional data and bi-

nary data, respectively. Here, we construct a shrinkage method based on the

James-Stein effect for the purpose of improving the clustering of continuous

multivariate data.

Suppose observations Xi1,Xi2, . . . ,Xini
are independently and identically

distributed (iid) observations from k multivariate normal distributions with

mean vectors µi and covariance matrices Qi, where i = 1, . . . , k. That is,

we have observations from k subpopulations. Let the sample means of the

k clusters produced by the k-means algorithm be X̄1, X̄2, . . . , X̄k. Let the

overall sample mean be X̄. Define the James-Stein shrunken centroids as:

X̄JS
i = X̄ +

[

1 −
p̂ − 2

(X̄i − X̄)TQ−1
i (X̄i − X̄)

]+

(X̄i − X̄), (1)

Then we use the James-Stein shrinkage estimators X̄JS
i (i = 1, . . . , k) as

the new centroids in the k-means method. Note that when the subpopula-

tion covariance matrices are known, the true values Qi may be used in this

shrunken-centroid formula. When the Qi are unknown (as is often the case

in practice), the corresponding within-cluster sample covariance matrices Q̂i

may be used in place of Qi in the formula.

The specific algorithm we use is summarized as:

1. Classify the data into k clusters using the k-means method with k

random starting points, and obtain the ordinary centroids X̄i.

2. Shrink the resulting centroids X̄i towards the overall sample mean X̄

according to equation (3.1) and get the shrinkage centroids X̄JS
i .
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3. Classify data into k clusters using the k-means method with the shrink-

age centroids X̄JS
i . If two shrinkage centroids are not distinct, a tiny

random jitter may be added to separate them (see details in Section 4).

4. Repeat steps 2 and 3 until convergence is achieved (see details in Sec-

tion 4).

We emphasize that the within-cluster covariance matrices Qi (or their

sample estimates) are used only in the calculation of the shrunken cluster

centroids. The distance between each observation and each centroid, on

which the partitioning in k-means algorithm is based, is still defined as a

Euclidean distance, as usual. Maronna and Jacovkis (1974) studied alterna-

tive distance measures in the k-means algorithm, and they found that none

were as good as Euclidean distance. An alternative approach, which we have

not used in this paper, would be to estimate the covariance component in

X̄JS
i by centering the data across clusters (by subtracting the respective clus-

ter centroid from each multivariate object) and then estimating a common

covariance matrix using all the objects.

To judge the accuracy of the clustering results, we will calculate the

Rand index of the clustering partitions resulting from both ordinary k-means

and the shrinkage method. This index measures the similarity between the

obtained partition and the true clustering structure underlying the data.

This index was originally defined by Rand (1971) and, following Tan

(2005), may be written as follows: Let N00 be the number of pairs of objects

coming from a different underlying subpopulation and being placed into a

different cluster by the algorithm. Let N01 be the number of pairs of objects

coming from a different underlying subpopulation and being placed into the

same cluster by the algorithm. Let N10 be the number of pairs of objects

coming from the same underlying subpopulation and being placed into a

different cluster. Let N11 be the number of pairs of objects coming from
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the same underlying subpopulation and being placed into the same cluster.

Then

Rand =
N00 + N11

N00 + N01 + N10 + N11

.

The index serves as a measure of concordance between the true underlying

clustering structure and the result produced by a clustering algorithm.

4 Simulation Studies

In this section we cluster a variety of simulated data sets to compare the

performance of our proposed method to that of ordinary k-means. As a basic

template, we generated a simulated sample of n = 50 objects from two five-

dimensional normally distributed subpopulations. The subpopulation means

were 0 = (0, 0, 0, 0, 0) and δ = (δ, δ, δ, δ, δ), where δ was a fixed constant.

The simplest covariance structure we studied was when the subpopulation

covariance matrix was set to be Q = σI5, where I5 is a 5×5 identity matrix.

The between-cluster dispersion was controlled by δ, and the within-cluster

dispersion was controlled by σ. We also studied a variety of other covariance

structures, as described below.

In the first step of our method, the initial 2-cluster partition of the ob-

jects was found using the k-means algorithm, implemented by the R function

kmeans. Secondly, we shrunk the centroids towards the overall sample mean

according to (1), resulting in the new centroids. Note that sometimes the new

centroids might not be distinct and this would stop the k-means algorithm. In

that case, we added a small amount of random noise Y ∼ N(0, 0.00001×I5)

to each centroid, implemented by the R function jitter, to separate them.

We note that for the magnitudes of the data values simulated under these set-

tings, this number 0.00001 represented a value small enough to separate the

centroids numerically without creating any practical distance between them,

relative to the overall data scale. On the other hand, if the data values (and
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thus the distance between clusters) is measured on a very small scale, then

the jitter variance may need to be smaller. If the jitter variance is several

orders of magnitude smaller than the corresponding variable’s measurement

scale, then this should be sufficient for our purpose.

Finally, we determined that the algorithm converged when the concor-

dance between the partition produced at a given iteration and the partition

produced at the previous iteration (as measured by the Rand index comparing

those two partitions) was 1. In other words, the algorithm stops when the

discrepancy between two consecutive partitions is zero (up to mere differences

in cluster labels).

We use a variety of different settings for the simulations. In Section 4.1,

we investigate the effect of the within-cluster variance σ and the effect of

the covariance structure Q on the accuracy of the proposed method. We

first study data with an uncorrelated covariance structure. In addition, we

vary the number of underlying clusters, simulating data coming from three

and five subpopulations. Then we examine data with a variety of corre-

lated covariance structures, including autoregressive covariance structures.

In Section 4.2, we investigate the effect of the effective dimension p̂ of the

covariance matrix. Further data structures, including both five-dimensional

data and eight-dimensional data, as well as data having masking variables,

are simulated and studied in Section 5.

4.1 Varying the Within-cluster Variance σ

4.1.1 Uncorrelated Data

In the following simulations, we fixed δ to be 2, and we allowed σ to take

the values 0.1, 2, 4, 6, 8, or 10. We first examined data in which the variables

were uncorrelated. The simulation results from the shrinkage method and

the original k-means method are given in Table 1 and presented graphically

11



in Figure 1.
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Figure 1: Average Rand index values for the k-means clusterings of 5000
simulated uncorrelated 5-dimensional data sets from 2 subpopulations, based
on the ordinary method (squares) and the shrinkage method (triangles).

At each setting, we simulated 5000 data sets and the values in Table

1 represent the average Rand index for those 5000 sets. In examining the

Rand indices, we see that the Rand indices based on the shrinkage approach

are generally significantly higher than the corresponding ones based on the

traditional approach. For σ = 0.1 (small dispersion within clusters), the

Rand indices based on these two approaches are almost identical. For σ =

2 or 4 (medium dispersion within clusters), the Rand index based on the

shrinkage approach is typically significantly better than that based on the

traditional approach. For σ = 6, 8, or 10 (large dispersion within clusters),
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Table 1: Average Rand index values for the k-means clustering of the sim-
ulated uncorrelated 5-dimensional data from 2 subpopulations with different
σ values (Rand values averaged over 5000 simulated data sets and Monte
Carlo standard errors given in parentheses).

Method σ = 0.1 σ = 2 σ = 4 σ = 6 σ = 8 σ = 10

Ordinary 0.9998 0.8171 0.6861 0.6165 0.5804 0.5587
(0.00008) (0.00153) (0.00146) (0.00125) (0.00103) (0.00089)

Shrinkage 1 0.8837 0.7651 0.6972 0.6570 0.6285
(0) (0.00086) (0.00102) (0.00100) (0.00094) (0.00090)

the Rand index based on the shrinkage approach is notably better than that

based on the traditional approach. Additionally, we ran the simulation by

increasing σ to 100 (extremely large dispersion within clusters), and the

resulting Rand index based on the shrinkage approach was only slightly better

for such large σ than that based on the traditional approach. These results

indicate that with increasing σ, the magnitude of the improvement from the

shrinkage approach first increases, then reaches its maximum, and finally

decreases. We note that a similar pattern is observed in Hitchcock and Chen

(2008).

4.1.2 Varying the Number of Clusters k

The simulations in Section 4.1.1 were done with k = 2 clusters. We also

performed similar simulations in the case of the data coming from several

clusters. In the following setting, we simulated k = 3 clusters, each con-

taining 15 five-dimensional objects. The underlying subpopulation means

were 0 = (0, 0, 0, 0, 0), 2 = (2, 2, 2, 2, 2), and −2 here. The subpopulations

were set to be normal with covariance matrix Q = σI5, and σ again varied

as 0.1, 2, 4, 6, 8, or 10. The Rand indices for the ordinary k-means and the

k-means with shrinkage are shown in Table 2. Again, the shrinkage approach

appears to lead to better clustering accuracy. The level of improvement from
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shrinkage (and the consistency of the improvement) was quite similar when

k = 3 as it was when k = 2.

Table 2: Average Rand index values for the k-means clustering of the sim-
ulated uncorrelated 5-dimensional data from 3 subpopulations with different
σ values (Rand values averaged over 5000 simulated data sets and Monte
Carlo standard errors given in parentheses).

Method σ = 0.1 σ = 2 σ = 4 σ = 6 σ = 8 σ = 10

Ordinary 0.9118 0.8079 0.7292 0.6932 0.6687 0.6489
(0.00177) (0.00112) (0.00062) (0.00055) (0.00057) (0.00061)

Shrinkage 0.9171 0.8783 0.7661 0.7164 0.6843 0.6647
(0.00178) (0.00088) (0.00068) (0.00055) (0.00054) (0.00055)

We then simulated data coming from k = 5 clusters, each containing 10

five-dimensional objects. The underlying subpopulation means were set to

be 0, 2, −2 (defined as above), (−2, 0, 2, 0,−2), and (2,−2, 0,−2, 2). The

subpopulations had the same covariance structures as in the 2-cluster and

3-cluster case. The top section of Table 3 shows the Rand indices for the

ordinary k-means and shrinkage version. For most of the range of σ values

examined, the shrinkage method produced better clustering accuracy, but

at higher σ, the ordinary k-means had slightly higher Rand indices. A pos-

sible explanation for this is that for this data structure, the within-cluster

variance was extremely high relative to the between-cluster separation. To

investigate this, we simulated data from five clusters with the subpopula-

tion mean vectors twice as large, creating somewhat greater between-cluster

separation: 0, 4, −4, (−4, 0, 4, 0,−4), and (4,−4, 0,−4, 4). The results are

shown in the bottom part of Table 3. We see that, in this case, the shrinkage

method outperformed ordinary k-means uniformly across every value of σ

investigated.
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Table 3: Average Rand index values for the k-means clustering of the sim-
ulated uncorrelated 5-dimensional data from 5 subpopulations with different
σ values (Rand values averaged over 5000 simulated data sets and Monte
Carlo standard errors given in parentheses).

Method σ = 0.1 σ = 2 σ = 4 σ = 6 σ = 8 σ = 10

Ordinary 0.9040 0.8399 0.7702 0.7405 0.7258 0.7161
(δ = 2) (0.00117) (0.00060) (0.00050) (0.00042) (0.00039) (0.00036)
Shrinkage 0.9094 0.8732 0.7930 0.7485 0.7178 0.6975
(δ = 2) (0.00117) (0.00053) (0.00047) (0.00052) (0.00065) (0.00070)

Ordinary 0.8963 0.9099 0.8926 0.8655 0.8389 0.8167
(δ = 4) (0.00121) (0.00093) (0.00075) (0.00066) (0.00059) (0.00057)
Shrinkage 0.8983 0.9446 0.9341 0.9027 0.8741 0.8471
(δ = 4) (0.00120) (0.00091) (0.00067) (0.00058) (0.00053) (0.00051)

4.1.3 Correlated Data

In addition to examining data in which the variables were uncorrelated, we

also considered the case when the variables were correlated. To investigate

this situation, we simulated data having covariance matrix Q with elements

σij =







σ, if i = j

rσ, if i 6= j .

The simulation results for r = 0.25 are given in Table 4.

Table 4: Average Rand index values for the k-means clustering of the sim-
ulated correlated 5-dimensional data from 2 subpopulations with different σ

values (Rand values averaged over 5000 simulated data sets and Monte Carlo
standard errors given in parentheses).

Method σ = 0.1 σ = 2 σ = 4 σ = 6 σ = 8 σ = 10

Ordinary 0.9996 0.7295 0.6325 0.5911 0.5719 0.5565
(0.00005) (0.00116) (0.00099) (0.00085) (0.00076) (0.00069)

Shrinkage 0.9999 0.7582 0.6523 0.6072 0.5830 0.5657
(0) (0.00105) (0.00095) (0.00084) (0.00076) (0.00070)

Compared to Table 1, a similar pattern is observed. The Rand indices
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based on the shrinkage approach are generally somewhat higher than those

based on the traditional approach. But as Tables 1 and 4 show, the im-

provement of the shrinkage approach with correlated data is less than the

improvement with uncorrelated data. For instance, the biggest improvement

for uncorrelated data is 0.0807, while the biggest improvement for correlated

data is 0.0287.

4.2 Varying the Effective Dimension p̂

Here, we investigate the relationship between p̂ and the clustering accuracy.

In our simulations in this section, we fixed the actual dimension p to be 5,

and σ to be 4. We simulated data having the covariance matrix

Q =























λ 0 0 0 0

0 σ 0 0 0

0 0 σ 0 0

0 0 0 σ 0

0 0 0 0 σ























We allowed λ to take the values 20.4σ, 6.67σ, 4.4σ, 2.86σ, 2.22σ, 1.82σ,

1.54σ, 1.33σ, 1.18σ and σ, and thus p̂ was 1.2, 1.6, 2, 2.4, 2.8, 3.2, 3.6, 4,

4.4, and 5.

The simulated results are shown in Table 5, and presented graphically in

Figure 2. Note that with increasing p̂, the Rand index increases, because the

variances of the components of X become more balanced and there are fewer

outliers.

In examining the Rand indices, when p̂ is less than or equal to 2, we

do not observe any significant difference between the traditional approach

and the shrinkage approach. When p̂ is greater than 2, the Rand index

values based on the shrinkage approach are higher than those based on the
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Figure 2: Average Rand index values for the k-means clusterings of 5000
simulated 5-dimensional data sets from 2 subpopulations, varying different p̂,
based on the ordinary method (square) and the shrinkage method (triangle).

traditional approach. In addition, the improvement from shrinkage (that is,

the difference between the Rand indices of the two approaches) increases with

p̂, and reaches its maximum when p̂ is 5, which is the actual dimension of

the data p.

The simulated results for eight-dimensional data are presented graphically

in Section 5. A similar pattern is observed: With increasing p̂, the Rand index

increases.

We see that the simulated results are approximately consistent with Bock’s

result in the estimation context: p̂ = 2 seems to be a turning point. When

p̂ ≤ 2, the MLE is dominant, so the centroids based on the MLE will give
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Table 5: Average Rand index values for the k-means clustering of the sim-
ulated data from 2 subpopulations varying different p̂ values (Rand values
averaged over 5000 simulated data sets and Monte Carlo standard errors
given in parentheses).

Method p̂ = 1.2 p̂ = 1.6 p̂ = 2 p̂ = 2.4 p̂ = 2.8

Ordinary 0.5048 0.5248 0.5534 0.5828 0.6068
(0.00028) (0.00059) (0.00094) (0.00116) (0.00127)

Shrinkage 0.5054 0.5230 0.5529 0.5956 0.6338
(0.00029) (0.00053) (0.00089) (0.00121) (0.00132)

Method p̂ = 3.2 p̂ = 3.6 p̂ = 4 p̂ = 4.4 p̂ = 5

Ordinary 0.6271 0.6434 0.6623 0.6775 0.6849
(0.00135) (0.00138) (0.00141) (0.00143) (0.00144)

Shrinkage 0.6784 0.7159 0.7414 0.7542 0.7636
(0.00128) (0.00115) (0.00107) (0.00105) (0.00103)

more accurate (or as accurate) clustering results. When p̂ > 2, the shrinkage

estimator is dominant, and thus the centroids based on shrinkage will give

more accurate clustering results.

4.3 Joint Effect of p̂ and σ Simultaneously

We also investigated the joint effect of p̂ and σ on clustering accuracy, and

the simulated results are shown in Figure 3. The perspective plot (Figure 3)

shows the relationship between the improvement (defined again as the Rand

index based on the shrinkage method minus the Rand index based on the

traditional method) and p̂ and σ. In the perspective plot, the improvement

seems to increase significantly as p̂ increases, while the improvement increases

only slightly as σ increases. Thus p̂ seems to play a more important role than

σ. In the perspective plot, the role of the contour line p̂ = 2 as a boundary is

clear. When p̂ ≤ 2, the improvement is negative or close to 0. When p̂ > 2,

the improvement increases as p̂ and σ increase.
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Figure 3: The perspective plot of the improvement of Rand index for the
k-means clusterings of 5000 simulated 5-dimensional data sets from 2 sub-
populations.

5 Supplementary Simulations

The purpose of this section is to display how the shrinkage method works (rel-

ative to the ordinary k-means approach) when the data come from an eclectic

variety of covariance structures. We therefore explore simulation settings not

considered in Section 4 and will indicate in which situations we can expect

the shrinkage method to improve clustering accuracy substantially.
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5.1 Additional Cluster Structures

For the first eight sets of additional simulations, we generated a sample of n =

50 objects from two five-dimensional normally distributed subpopulations.

The subpopulation means were 0 = (0, 0, 0, 0, 0) and δ = (2, 2, 2, 2, 2). The

subpopulation covariance matrices were denoted Q = Qk, k = 1, . . . , 8, where

each Qk was a 5 × 5 matrix representing one of several various covariance

structures. Each Qk, k = 1, . . . , 8 is given as follows, and the values of the

effective dimension p̂ for Q1, . . . ,Q8 are listed in Table 6:

Q1 =























σ 0 0 0 0

0 σ 0 0 0

0 0 σ 0 0

0 0 0 σ 0

0 0 0 0 σ























Q2 =























σ 0.1σ 0.1σ 0.1σ 0.1σ

0.1σ σ 0.1σ 0.1σ 0.1σ

0.1σ 0.1σ σ 0.1σ 0.1σ

0.1σ 0.1σ 0.1σ σ 0.1σ

0.1σ 0.1σ 0.1σ 0.1σ σ























Q3 =























σ 0.2σ 0.2σ 0.2σ 0.2σ

0.2σ σ 0.2σ 0.2σ 0.2σ

0.2σ 0.2σ σ 0.2σ 0.2σ

0.2σ 0.2σ 0.2σ σ 0.2σ

0.2σ 0.2σ 0.2σ 0.2σ σ























Q4 =























σ 0.3σ 0.3σ 0.3σ 0.3σ

0.3σ σ 0.3σ 0.3σ 0.3σ

0.3σ 0.3σ σ 0.3σ 0.3σ

0.3σ 0.3σ 0.3σ σ 0.3σ

0.3σ 0.3σ 0.3σ 0.3σ σ























Q5 =























σ −0.2σ −0.2σ −0.2σ −0.2σ

−0.2σ σ −0.2σ −0.2σ −0.2σ

−0.2σ −0.2σ σ −0.2σ −0.2σ

−0.2σ −0.2σ −0.2σ σ −0.2σ

−0.2σ −0.2σ −0.2σ −0.2σ σ
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Q6 =























σ 0.4σ 0.3σ 0.2σ 0.1σ

0.4σ σ 0.4σ 0.3σ 0.2σ

0.3σ 0.4σ σ 0.4σ 0.3σ

0.2σ 0.3σ 0.4σ σ 0.4σ

0.1σ 0.2σ 0.3σ 0.4σ σ























Q7 =























σ −0.4σ 0.3σ 0.2σ 0.1σ

−0.4σ σ −0.4σ 0.3σ 0.2σ

0.3σ −0.4σ σ −0.4σ 0.3σ

0.2σ 0.3σ −0.4σ σ −0.4σ

0.1σ 0.2σ 0.3σ −0.4σ σ























Q8 =























σ −0.4σ 0.3σ −0.2σ 0.1σ

−0.4σ σ −0.4σ 0.3σ −0.2σ

0.3σ −0.4σ σ −0.4σ 0.3σ

−0.2σ 0.3σ −0.4σ σ −0.4σ

0.1σ −0.2σ 0.3σ −0.4σ σ























Table 6: p̂ values for different covariances.

Covariance Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

p̂ 5 3.57 2.78 2.27 4.17 2.25 2.57 2.25

These covariance matrices yield a variety of correlation structures for the

simulated data. Q1 produces uncorrelated data (much like the simulations in

Section 4.1.1), but in which we let the value of σ increase to 100, much larger

than in Section 4.1.1. Q2 through Q4 include positive off-diagonal elements

in an equicorrelation structure, which Dobson (2002) calls “exchangeable.”

The positive correlation values increase from Q2 to Q4 to show the effect

on the shrinkage improvement of greater correlation among components. Q5

yields another equicorrelation (exchangeable) structure, but with negative
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correlations among components. Q6 yields an autoregressive-type structure.

Q7 and Q8 include a variety of positive and negative correlations among

components, with Q8 including more negative correlations.

Figure 4 through Figure 11, shown in the Appendix, display the compara-

tive performances of the shrinkage method and the ordinary k-means method

(as measured by average Rand index) for the various covariance structures.

From Figure 4, we see that the improvement from the shrinkage method

gradually dissipates as the within-cluster variability gets very large, but the

shrinkage method still does better than ordinary k-means for all values of σ

in the plot. Figure 5, Figure 6, and Figure 7 show that with the equicor-

relation structure, the improvement from shrinkage lessens somewhat as the

correlations among components increase.

On the other hand, the improvement from shrinkage is quite sizable when

there are negative correlations among components, as shown in Figure 8.

This phenomenon is probably due to the low value of the largest eigenvalue

of Q5 and the high value of the effective dimension p̂.

However, Figure 9 indicates that the improvement from shrinkage is mini-

mal when the autoregressive structure given by Q6 is specified. Any improve-

ment from shrinkage is mixed under the less structured covariance patterns

of Q7 and Q8.

Next, we considered generating 8-dimensional normal data having covari-

ance matrix Q9. This matrix has σ = 4 and a variance component λ whose

value determines the effective dimension of the data, much like the covariance
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structure of the simulated data in Section 4.2. This covariance matrix is:

Q9 =









































λ 0 0 0 0 0 0 0

0 σ 0 0 0 0 0 0

0 0 σ 0 0 0 0 0

0 0 0 σ 0 0 0 0

0 0 0 0 σ 0 0 0

0 0 0 0 0 σ 0 0

0 0 0 0 0 0 σ 0

0 0 0 0 0 0 0 σ









































We allowed λ to take the values 14σ, 7σ, 4.67σ, 3.5σ, 2.8σ, 2.33σ, 2σ,

1.75σ, 1.55σ, 1.40σ, 1.27σ, 1.16σ, 1.07σ and σ, and thus the corresponding

p̂ was 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, and 8.

The dependence on the value of p̂ was about as marked for the 8-dimensional

data as it was for the 5-dimensional data of Section 4.2. As shown in Fig-

ure 12, the shrinkage method only began leading to improvement when p̂ ≥ 3,

and the improvement became more sizable for the larger values of p̂ in the

plot.

Lastly, to investigate the performance of the shrinkage approach with

data coming from a heavy-tailed multivariate distribution, we generated a

sample of n = 50 objects from two five-dimensional t-distributed (with 5

degrees of freedom) subpopulations. The subpopulation means were 0 =

(0, 0, 0, 0, 0) and δ = (2, 2, 2, 2, 2). The subpopulation covariance matrix

was Q = Q1, where Q1 is the 5 × 5 matrix previously defined. Figure 13

shows the improvement from shrinkage is nearly identical to that under the

corresponding situation with normal data that was shown in Figure 1.
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5.2 Incorporating Masking Variables

Finally, we address the case of masking variables, or noise variables. Often

not all the variables observed will play a role in the clustering structure.

Here we simulated data following the same basic pattern as in Section 4.1.1:

two clusters of 25 five-dimensional objects each. However, we let pM = 3 of

the p = 5 variables be masking variables, which do not play a role in the

underlying separation of the objects into clusters. Hence only two of the

variables were genuine clustering variables. This was achieved by setting the

two underlying cluster means to (2, 2, 0, 0, 0) and (0, 0, 0, 0, 0). The results

(as shown in Figure 14) indicate that the improvement due to shrinkage is

consistent across all values of σ studied, similar to the corresponding situation

displayed in Figure 1.

We also simulated data that included p = 8 variables, of which pM =

5 were masking variables. The results are shown in Figure 15, and these

similarly show consistent improvement due to the shrinkage method.

6 Example: Analysis of Expression Ratios of

Yeast Genes

In this section, we apply the shrinkage approach to the yeast gene expression

data collected by Alter, Brown and Botstein (2000). The data set contains 78

genes, and the variables are expression ratios measured 18 times (at 7-minute

intervals). The details are described in Spellman et al. (1998). The data were

log-transformed to make them approximately normally distributed.

Biologists believe that there are five groups in this gene data: genes 1

through 13 are believed to belong to the M/G1 group, genes 14-52 to the G1

group, genes 53-60 to the S group, genes 61-67 to the S/G2 group, and genes

68-78 to the G2/M group. (Here, the letter S denotes Synthesis; the letter M
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denotes Mitosis; the letter G denotes Gap.) While these classifications are

by no means certain, for the purpose of this example we will treat them as

the true underlying clusters.

To analyze these data, we treated them as 78 separate observations. Ini-

tially, we clustered the genes into 5 clusters using the ordinary approach,

implemented by the R function kmeans. Then, we clustered the genes into

5 clusters using the shrinkage approach, implemented by our algorithm. For

this real-data example, the within-cluster sample covariance matrices Q̂i were

used in place of Qi in formula (1). The results are listed in Table 7.

Table 7: The Rand index values for the yeast gene data using the ordinary
k-means approach and the shrinkage approach.

Method Rand
Ordinary 0.5818
Shrinkage 0.7343

According to the Rand index, the ordinary k-means method did not cap-

ture the supposed clustering structure extremely well: 58.18% of the possible

pairs of curves were correctly “matched” by this approach. The shrinkage

approach came closest to capturing the true grouping of the curves: 73.43%

of the possible pairs of curves were correctly “matched” by this approach.

The S group (genes 53-60) is the only cluster of the five that is particularly

well-defined: these eight genes are classified into the same cluster. The S/G2

group (genes 61-67) is poorly defined. These seven genes are classified into

four different clusters; the other three groups are moderately well-defined:

these genes from the same group are classified into two different clusters.

In short, the shrinkage approach gave better accuracy than the traditional

approach. Of course, conclusions based on the real data must be tempered

by the uncertainty about the true number of clusters and the form of the

true clustering structure.
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7 Conclusion

We have developed an adjustment to the K-means clustering algorithm that

relies on James-Stein shrinkage principles. It is particularly related to the

multivariate normal mean point estimator of Bock (1975) and simulations

show it has similar characteristics to Bock’s estimator regarding when it

improves on the usual estimator.

Based on various simulations, it appears the improvement from the shrink-

age approach is greatest for data: (1) in which the variables are uncor-

related, (2) data with some negative off-diagonal covariance elements, (3)

high-dimensional data, or (4) data with moderate to large within-cluster

variance. The improvement from the shrinkage approach is less for data in

which variables are strongly correlated, low-dimensional data, or data with

either small or extremely large within-cluster variance. It is important to

note, however, that in virtually all settings studied, the shrinkage approach

was approximately as good as or better than the traditional approach. For a

relatively wide variety of data, using shrinkage can significantly improve the

accuracy of K-means cluster analysis.
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Appendix: Figures for Supplementary Simu-

lations

[Figure 4 around here]

0 20 40 60 80 100

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

σ

R
an

d

Figure 4: Average Rand index values for the k-means clusterings of 5000
simulated 5-dimensional data sets with covariance Q1, based on the ordinary
method (squares) and the shrinkage method (triangles).
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[Figure 5 around here]
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Figure 5: Average Rand index values for the k-means clusterings of 5000
simulated 5-dimensional data sets with covariance Q2, based on the ordinary
method (squares) and the shrinkage method (triangles).

[Figure 6 around here]
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Figure 6: Average Rand index values for the k-means clusterings of 5000
simulated 5-dimensional data sets with covariance Q3, based on the ordinary
method (squares) and the shrinkage method (triangles).
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[Figure 7 around here]
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Figure 7: Average Rand index values for the k-means clusterings of 5000
simulated 5-dimensional data sets with covariance Q4, based on the ordinary
method (squares) and the shrinkage method (triangles).

[Figure 8 around here]
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Figure 8: Average Rand index values for the k-means clusterings of 5000
simulated 5-dimensional data sets with covariance Q5, based on the ordinary
method (squares) and the shrinkage method (triangles).
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[Figure 9 around here]
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Figure 9: Average Rand index values for the k-means clusterings of 5000
simulated 5-dimensional data sets with covariance Q6, based on the ordinary
method (squares) and the shrinkage method (triangles).

[Figure 10 around here]
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Figure 10: Average Rand index values for the k-means clusterings of 5000
simulated 5-dimensional data sets with covariance Q7, based on the ordinary
method (squares) and the shrinkage method (triangles).
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[Figure 11 around here]
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Figure 11: Average Rand index values for the k-means clusterings of 5000
simulated 5-dimensional data sets with covariance Q8, based on the ordinary
method (squares) and the shrinkage method (triangles).

[Figure 12 around here]
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Figure 12: Average Rand index values for the k-means clusterings of 5000
simulated 8-dimensional data sets with covariance Q9, based on the ordinary
method (squares) and the shrinkage method (triangles).
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[Figure 13 around here]
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Figure 13: Average Rand index values for the k-means clusterings of 5000
simulated 5-dimensional data sets from multivariate t-distribution, based on
the ordinary method (squares) and the shrinkage method (triangles).
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[Figure 14 around here]
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Figure 14: Average Rand index values for the k-means clusterings of 5000
simulated 5-dimensional data sets having 2 genuine clustering variables and 3
masking variables, based on the ordinary method (squares) and the shrinkage
method (triangles).
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[Figure 15 around here]
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Figure 15: Average Rand index values for the k-means clusterings of 5000
simulated 5-dimensional data sets having 3 genuine clustering variables and 5
masking variables, based on the ordinary method (squares) and the shrinkage
method (triangles).
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