Note: You must show your work wherever possible!

1. Suppose that on each play of a game, a gambler either wins 1 dollar with probability p or loses 1 dollar with probability $1-p$. The gambler continues betting until he has cumulatively won n dollars or cumulatively lost m dollars. What is the probability that the gambler finishes the game a winner (i.e., having cumulatively won n dollars)?
2. For the Markov chain with states labeled $\{1,2,3,4\}$ whose transition probability matrix is given below, find $f_{i 3}$ and $s_{i 3}$ for $i=1,2,3$.

$$
P=\left[\begin{array}{cccc}
0.4 & 0.2 & 0.1 & 0.3 \\
0.1 & 0.5 & 0.2 & 0.2 \\
0.3 & 0.4 & 0.2 & 0.1 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

3. Consider a branching prcess with $\mu<1$. Show that if $X_{0}=1$, then the expected number of individuals that ever exist in this population is given by $1 /(1-\mu)$. What is the expected number of individuals that ever exist in this population if $X_{0}=n$?
4. For a branching process, calculate the extinction probability π_{0} when
(a) $P_{0}=1 / 4, P_{2}=3 / 4$.
(b) $P_{0}=1 / 4, P_{1}=1 / 2, P_{2}=1 / 4$
(c) $P_{0}=1 / 6, P_{1}=1 / 2, P_{2}=1 / 3$
5. Consider a Markov chain with state space $\{0,1,2,3\}$ having the following transition probability matrix:

$$
P=\left[\begin{array}{cccc}
0.4 & 0.2 & 0.1 & 0.3 \\
0.2 & 0.2 & 0.1 & 0.5 \\
0.3 & 0.2 & 0.5 & 0 \\
0.2 & 0.1 & 0.4 & 0.3
\end{array}\right]
$$

(a) If $X_{0}=0$, find the probability that state 2 is entered before state 3. [Hint: Let $P_{i}=$ the probability of entering state 2 before entering state 3 , starting from state i. Condition on the value of X_{1}.]
(b) If $X_{0}=0$, find the mean number of transitions that occur before either state 2 or state 3 is entered. [Hint: First create a Markov chain with an absorbing state, and work with that.]

