STAT 521 -Spring 2019 -HW 3

Note: You must show your work wherever possible!

- 1. Suppose that on each play of a game, a gambler either wins 1 dollar with probability p or loses 1 dollar with probability 1 p. The gambler continues betting until he has cumulatively won n dollars or cumulatively lost m dollars. What is the probability that the gambler finishes the game a winner (i.e., having cumulatively won n dollars)?
- 2. For the Markov chain with states labeled $\{1, 2, 3, 4\}$ whose transition probability matrix is given below, find f_{i3} and s_{i3} for i = 1, 2, 3.

$$P = \begin{bmatrix} 0.4 & 0.2 & 0.1 & 0.3\\ 0.1 & 0.5 & 0.2 & 0.2\\ 0.3 & 0.4 & 0.2 & 0.1\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- 3. Consider a branching press with $\mu < 1$. Show that if $X_0 = 1$, then the expected number of individuals that ever exist in this population is given by $1/(1 \mu)$. What is the expected number of individuals that ever exist in this population if $X_0 = n$?
- 4. For a branching process, calculate the extinction probability π_0 when
 - (a) $P_0 = 1/4, P_2 = 3/4.$
 - (b) $P_0 = 1/4, P_1 = 1/2, P_2 = 1/4$
 - (c) $P_0 = 1/6, P_1 = 1/2, P_2 = 1/3$
- 5. Consider a Markov chain with state space $\{0, 1, 2, 3\}$ having the following transition probability matrix:

$$P = \begin{bmatrix} 0.4 & 0.2 & 0.1 & 0.3 \\ 0.2 & 0.2 & 0.1 & 0.5 \\ 0.3 & 0.2 & 0.5 & 0 \\ 0.2 & 0.1 & 0.4 & 0.3 \end{bmatrix}$$

(a) If $X_0 = 0$, find the probability that state 2 is entered before state 3. [Hint: Let P_i = the probability of entering state 2 before entering state 3, starting from state *i*. Condition on the value of X_1 .]

(b) If $X_0 = 0$, find the mean number of transitions that occur before either state 2 or state 3 is entered. [Hint: First create a Markov chain with an absorbing state, and work with that.]