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Abstract

In linear regression, it is common to calculate measures of influence
for each observation in the sample to understand the impact it has
on the regression model. Typically, such measures are used to assess
the effects of observations on predictions of the response for obser-
vations within the sample. However, in some scenarios, the primary
interest is in predictions for out-of-sample observations. In this study,
we present two measures of influence on out-of-sample predictions which
apply to the concurrent functional regression model, in which both
the predictor and response are functional observations. These two mea-
sures, which we call ∆ and Accumulated Influence Percentiles (AIP),
describe how the prediction of an out-of-sample observation’s response
function changes when the model is fit with and without each of the
functional observations in turn. We also describe a weighted boot-
strapping method to assess formally whether an observation within the
sample has significant influence on the out-of-sample prediction. We
present a simulation study to illustrate the effectiveness of the method,
and two relevant real data examples (on river stage functions and on
air and water temperature functions) further illustrate the method.

Keywords: Functional data analysis, Out-of-sample influence measures,
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1 Introduction

In traditional regression, it is common to measure the influence an observa-
tion has on a fitted model. Traditional measures like DFFITS [1] and Cook’s
distance [2] to measure the influence an observation has on an in-sample pre-
diction of that observation’s response (or of all responses in the sample). The
concurrent linear model for functional data involves using one set of (predic-
tor) curves Xi(t), i = 1, . . . , N to predict or explain a corresponding set of
(response) curves Yi(t), i = 1, . . . , N . Extensions of traditional measures of
influence to the functional-data setting have been explored by Shen and Xu [3],
Chiou and Möller [4], Febrero-Bande et al. [5], Chen et al. [6], and Pittman and
Hitchcock [7]. In this article, we present two new measures of influence, which
we call ∆ and Accumulated Influence Percentiles (AIP ), for use with the con-
current functional regression model, which calculate how the prediction of an
out-of-sample response curve of interest, say Ŷ new(t), changes when the con-
current functional model is fit with and without each functional observation in
turn. This is different than the traditional influence measures because it exam-
ines how the ith observation influences the prediction of a new target response
curve Ŷ new(t), so that this out-of-sample observation is different from those
used to fit the model. In practice, knowing which observations have significant
influence on a specific new prediction is valuable to construct reliable predic-
tions of a new response curve in the functional regression setting. We derive ∆i

and AIPi for the ith functional observation i = 1, . . . , N , where larger values
indicate that the observation has higher influence when predicting an external
observation’s response curve. While ∆i is a metric that indicates whether or
not an entire observation is influential in the prediction by measuring the mag-
nitude of the change, AIPi is similar but takes into account the duration of the
influence spanning throughout the functional observation. Section 2 describes
both measures in detail, and Section 3 proposes a weighted bootstrap method
to determine whether an observation’s measure is significantly large. Section 4
discusses a simulation study that illustrates the effectiveness of our methods.
We then apply our proposed measures to two real datasets in Sections 5 and 6.

2 Functional Regression Influence Measures

2.1 Influence Measure: ∆i

The concurrent functional regression model has model equation Yi(t) = β0(t)+
β1(t)Xi(t)+ϵi(t), i = 1, . . . , N where β0(t) is the functional intercept and β1(t)
is the functional slope that relates predictor Xi(t) and response Yi(t) at each
t. Estimates of β0(t) and β1(t) are computed using all N pairs of functional
data (which are represented via basis functions), using the fRegress function

in the fda package [8] in R [9]. The resulting β̂0(t) and β̂1(t) are used in the
fitted functional regression model, along with the external observation’s known
predictor curve Xnew(t), to calculate the prediction Ŷ new(t). The formula for
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∆i is then

∆i =

[∫
(Ŷ new(t)− Ŷ new

(i) (t))pdt

]1/p
. (1)

Ŷ new(t) is the predicted value for a new response curve using all N sets of
Xi(t) and Yi(t) observations. Ŷ

new
(i) (t) is that same prediction from a model fit

with observation i withheld. In practice, we use p = 2 for an L2 measure and
we approximate this using trapezoidal approximation via the trapz function
in the pracma package [10] in R. The observation with the highest ∆i value
has the most overall influence on the prediction of Ŷ new(t) and should be
further investigated, especially if this value is much larger than the next high-
est ∆i value. In section 4.2, we describe a weighted bootstrapping approach
to approximate the null distribution of ∆ for a particular out-of-sample tar-
get observation, which can be used to determine whether any observed ∆i

measures are significantly large.

2.2 Influence Measure: Accumulated Influence
Percentiles (AIPi)

The previously discussed measure calculates the overall influence each observa-
tion has on an out-of-sample prediction. Our second influence measure, which
we call Accumulated Influence Percentiles (AIP ), accounts for whether the
difference (based on fits with and without each sample observation) in the
prediction of an external observation is entirely at a single portion of the func-
tional observation or spread throughout it, thus combining the magnitude of
the difference with the duration of the difference. The formula for AIPi is:

AIPi =

∫ 1

0

ϕp

(∣∣Ŷ new(t)− Ŷ new
(i) (t)

∣∣) dp, (2)

where t = (t1, . . . , tn) and ϕp(x) is the pth percentile of the values in the
vector x. If an observation has a large ∆, but it is caused by a large difference
at a single portion of the prediction, then the resulting percentile curve of
absolute differences will be relatively flat across p ∈ [0, 1] and increase sharply
at the higher percentiles. Taking the area under the curve minimizes the effect
of a single large difference and balances the magnitude of the difference and
the duration of the difference.

3 Approximate null distributions of ∆ and AIP

To determine the significance of the observed influence measures, we employ a
weighted bootstrapping method introduced by Pittman and Hitchcock [7] that
approximates null distributions for each of ∆ and AIP , i.e. a distribution for
each metric under the condition that there is no especially influential curve. To
accomplish this, when selecting our bootstrap sample we propose to sample the
apparently less influential observations from our observed curves more often
than the apparently most influential observations. We calculate the influence
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measure ∆i or AIPi (generally denoted as ri) for each observation, and then
use the following equation to translate the metric value for observation i into
a selection probability θi:

θi =
(1/ri)

α∑
i [(1/ri)

α]
, α ≥ 0. (3)

Note that α = 0 corresponds to equal selection probabilities for each obser-
vation. In practice, the tuning parameter α should not exceed 0.5 and is
most crucial when N is small. The following weighted bootstrap method will
approximate a null distribution of the measure:

1. Calculate ri for each observation.
2. Select an appropriate value of α (or allow a range of choices) and calculate

θi for i = 1, . . . , N .
3. Sample N paired observations with replacement from the original set of

data, where the ith observation has probability θi of being selected. Each
bootstrap sample then consists of N functional pairs {(X∗

1 (t), Y
∗
1 (t)), . . . ,

(X∗
N (t), Y ∗

N (t))}.
4. Using these new pairs of functional data, fit the concurrent functional

regression model and calculate ri for each observation i = 1, . . . , N .
5. Repeat Steps 3-4 for the desired number of bootstrap iterations (B) to

obtain NB values of the measure, which approximate draws from a null
distribution for that influence measure.

Values of the metric from the originally observed dataset can then be com-
pared to percentiles from the respective bootstrap distribution to determine
whether the largest values identified in the original data analysis are signifi-
cantly large relative to the null distribution. The ideal value of α in Equation
(3) varies based on the observed measures from the initial dataset. In general,
we recommend using α = 0.5 when N is small or when one of the observed
influence measures is noticeably larger than the rest. If values of the metric
have little variability, the bootstrapped percentiles will be similar regardless of
α ∈ (0, 0.5); however, when the observed influence measures are more spread
out or one observation’s influence measure is much larger than the rest, using
α = 0.5 dampens the effect that this observation has on the bootstrap sample
and prevents the bootstrap distribution from being dominated by the values
for the most influential observations, resulting a bootstrap sample that better
resembles a null distribution. This allows truly significant influential observa-
tions to be flagged as extreme. For large sample sizes, an observation with a
large influence measure has less impact on the approximate null distribution
since it is less likely to be sampled in a given iteration (regardless of the value
of α) compared to when the sample size is small; therefore, using α = 0 in large
sample scenarios is appropriate. If the sample size is moderate, or it is unclear
whether the largest influence measure is much larger than the next highest,
we recommend using both α = 0 and α = 0.5 separately and comparing the
resulting percentiles to see the effect of the more influential observations.
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After we perform this bootstrapping method, the significantly influential
functional observations can be identified by comparing the observed measures
from the original dataset to the upper percentiles of the null distribution.

4 Simulation Study

To elucidate the effectiveness of these new influence measures and the boot-
strap method, we perform a simulation study in which we generate a sample
of paired functional predictor and response observations and intentionally con-
taminate one of the response curves. After generating an additional predictor
curve which corresponds to a hypothetical out-of-sample target observation, we
calculate for each sample observation our measures of influence on the predic-
tion of the response curve of the target observation. Once we have the influence
measure values for each observation, we perform our bootstrap method to
determine where these values fall within the null distribution.

This simulation study is constructed in a similar manner to the one pre-
sented by Pittman and Hitchcock [7], which investigated functional regression
measures of influence on in-sample prediction and estimation of regression
coefficients as opposed to the out-of-sample prediction that we focus on here.
We generate as predictor functions N independent X(t) curves over a grid of
values t ∈ {1, 2, . . . , 1000} using the following formula:

X(t) =
t

12
+

[
as sin

[
t− ds
ks

]
+ cs

][
ac cos

[
t− dc
kc

]
+ cc

]
where each of the N curves is generated by randomly selecting the parameters
within the equation as follows: (1) as, ac, cs and cc are independently sampled
from the list {−3,−2,−1, 0, 1, 2, 3}; (2) ks and kc are sampled from the list
{−300,−200,−100, 100, 200, 300}; and (3) ds and dc are sampled from the
list {−100,−50, 0, 50, 100}. By varying the combinations of parameters used
to generate the functional data, we produce curves that are similar, following
the same underlying signal curve m(t) = t/12, but not exactly the same. An
example of N = 20 such X(t) curves is shown in Figure 1 (top). Note that the
simulation results are not changed if the parameters’ ranges are expanded as
long as they are the same for all N curves. We set the functional slope and
intercept functions to be β0(t) = cos(t/200) + 2 and β1(t) = sin(t/200) + 2.

We generate response signal curves Yi(t) = β0(t)+β1(t)Xi(t), i = 1, . . . , N ,
and then we coarsen the relationship between the predictor and response curves
by generating noise functions ϵi(t) to slightly distort the functional relation-
ship between each pair of simulated X(t) and Y (t) curves. Specifically, we
add to the signal curves realizations of the Ornstein-Uhlenbeck process [11],
approximated using the Euler-Maruyama method. An example of a resulting
set of 20 simulated response curves is shown in Figure 1 (center).

As an initial check that these generated data follow our concurrent func-
tional linear model, before introducing any contamination, we generated 100
independent data sets, fit the model for each, and verified the estimates of
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Fig. 1: Top: N = 20 generatedX(t) curves using the described functional data
generation method. Center: N = 20 response (Y (t)) curves used in simulation
with no contaminated observations (λ = 1). Bottom: N = 20 response (Y (t))
curves used in simulation with one outlier (red) using λ = 2.

β0(t) and β1(t) resembled the true functional slope and intercept on average.
However, all further analysis was done on simulated data with a contaminated
curve, as described next.

We intentionally contaminated the β1(t) function for one of the N observa-
tions, setting β1(t) = λ× sin(t/200)+ 2 for some λ > 0 for this curve. Clearly,
λ = 1 represents the control case in which the contaminated observation is
generated the same way as the others. In this simulation, we set λ ∈{0.25,
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0.5, 0.75, 0.9, 1, 1.1, 1.25, 1.5, 1.75, 2}. Figure 1 (bottom) gives an example of
N = 20 response curves with the contaminated curve generated using λ = 2.

We implemented the following algorithm for combinations
of: N = 100, N = 50, N = 20, and N = 10; λ ∈
{0.25, 0.5, 0.75, 0.9, 1, 1.1, 1.25, 1.5, 1.75, 2}; and for α = 0, 0.5.

1. Select λ.
2. Generate N sets of {Xi(t), Yi(t)} curves with one Yi(t) curve contaminated

using λ.
3. Generate the predictor curve of an out-of-sample target observation.
4. For curve i = 1, . . . , N , calculate the measure of influence (∆i or AIPi) on

the prediction of the response curve corresponding to the target observation.
5. For the selected α, calculate the selection probabilities θi for each observa-

tion using Equation (3).
6. Perform B = 100 bootstrap iterations, sampling the N observations with

replacement, calculating the influence measure for each observation in each
iteration (yielding NB values of the measure).

7. Determine the percentile relative to this bootstrap distribution of the orig-
inally contaminated observation’s influence measure, checking whether it is
above the 95th percentile.

8. Repeat 100 times for each combination of the influence measure, N , λ, and
α.

Note that for each data generation, the bootstrapping process is executed using
each choice of α on the same generated data.

With our simulated data, we tested whether the ∆ measure successfully
identifies the contaminated observation as influential, on average.

Figure 2 shows the average proportion of contaminated observations that
were above the 95th percentile for ∆i for N ∈ {10, 20, 50, 100}. This is analo-
gous to the power of the procedure at a 0.05 significance level. When λ moved
away from 1, the proportion of contaminated observations flagged increased.
This correctly indicates that when an observation is more extreme, it is flagged
as influential more often. Additionally, when N is small, this test had a sub-
stantially higher power when α = 0.5, indicating that choosing α > 0 is
desirable for small N .

Furthermore, Figure 3 provides the average p-value, which is 1 minus the
average percentile within the bootstrap distribution of the contaminated obser-
vation. When λ moved away from 1, the p-value decreased, indicating that
the contaminated observation’s influence measure was frequently significant.
These results consistently indicate that our method successfully identifies the
observation that is truly influential on an out-of-sample prediction and that
with a small sample size, using α = 0.5 improves the strength of the method.

Our simulation study also established the validity of AIP in identifying
observations influential on out-of-sample prediction. Figure 4 and Figure 5
show the average estimated power and p-value of the AIP measure.
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Fig. 2: Power functions displaying the average proportion of contaminated
observations above the 95th percentile from the approximate null distribution
of ∆ for different values of α (with error bars representing one standard error)
for different sample sizes N .

Fig. 3: Average p-value (1− percentile within bootstrap distribution) of con-
taminated observations for different values of α (with error bars representing
one standard error) for different sample sizes N for ∆.
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Fig. 4: Power functions displaying the average proportion of contaminated
observations above the 95th percentile from the approximate null distribution
of AIP for different values of α (with error bars representing one standard
error) for different sample size N .

Figure 4 shows the average proportion (i.e., power) of contaminated obser-
vations that were above the 95th percentile of the approximate null distribution
of AIP for N ∈ {10, 20, 50, 100}. When λ moved away from 1, the propor-
tion of contaminated observations flagged increased. This indicates that when
an observation is more extreme, it is appropriately flagged as influential more
often. Additionally, when N is small, this test had a substantially higher power
when α = 0.5, again indicating that setting α > 0 was useful in this case.

Figure 5 provides plots of the average p-value. When λ moved away from
1, the p-value decreased, indicating that the contaminated observation’s AIP
was often significantly large. These results consistently indicate that our new
influence measure AIP successfully identifies the observation that is truly
influential on an out-of-sample prediction.
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Fig. 5: Average p-value (1− percentile within bootstrap distribution) of con-
taminated observations for different values of α (with error bars representing
one standard error) for different sample sizes N for AIP .

5 Application: River Stage Data During Flood
Events

We applied these measures to river stage data studied by Pittman et al. [12],
who analyzed river stages (heights) from two related gage locations at Con-
garee National Park near Columbia, South Carolina. They used a landmark
alignment technique to objectively determine the optimal start and end points
of ten flood events in which the Congaree River [13] flowed over-bank, through
the floodplains, and into Cedar Creek [14]. This resulted in 10 historic flood
events that could be used as paired observations in the concurrent functional
model. The purpose of the functional regression was to relate the Congaree
River stage to the Cedar Creek stage during flood events, in order to recon-
struct the Cedar Creek stage during a major flood event in October 2015 when
the Cedar Creek gage went offline but the Congaree River gage remained func-
tioning. The ∆ influence measure will determine the 10 historic flood events’
influence on the eventual reconstruction of the October 2015 Cedar Creek stage
and whether any of these events’ influence measures are significantly larger
than expected.
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Fig. 6: The reconstructed October 2015 Cedar Creek stage with all 10 obser-
vations (solid black) and with the February 2020 observation withheld (dashed
red).

We first used the concurrent model fitted on the full data set to recon-
struct the missing Cedar Creek stage during the October 2015 flood. We then
repeated the fits and reconstructions, leaving out each of the functional obser-
vations in turn. Figure 6 provides an example of the difference between the
reconstruction Ŷ new(t) based on the full data and the reconstruction Ŷ new

(10) (t)
based on data with the February 2020 event withheld. ∆ was the L2 distance
between the two curves based on Equation (1). The resulting ∆i for each
flood event i is given in Table 1 and plots of the October 2015 Cedar Creek
reconstruction based on fits with and without each event can be found in the
Supplementary Material.

The March 2003 and February 2020 flood events stand out with ∆i values
about twice as large as the next highest values, indicating that these two events
have the greatest impact on the target event’s reconstruction.

Given our small sample size (N = 10), we used α = 0.5 when we approxi-
mated the null distribution. The March 2003 event had the highest ∆ (14.165),
but this was not as large as the 90th percentile (15.070). This indicates that
none of the ten prior flood events have a significantly large impact on the
reconstructed October 2015 Cedar Creek stage.

We can also identify potentially influential functional observations in the
river stage data using AIP . This measure involves the absolute difference
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Table 1: The L2 distance (∆i) between the 2015 Cedar Creek reconstructions
with all 10 observations included and with each observation individually with-
held.

Event ∆
August 1995 8.706
February 1998 2.559
March 2003 14.165
May 2003 6.684
September 2004 6.285
March 2007 8.628
February 2010 2.118
May 2013 3.204
November 2018 5.580
February 2020 13.377

Table 2: ∆ percentiles of each influential measurement from 5000 boot-
strapped river stage observations along with the observed maximum of each
metric in the river stage data context. Note that α = 0.5 is most appropriate
to use given the small sample size N = 10.

Percentile α = 0 α = 0.5
90% 13.253 15.070
95% 18.078 19.730
99% 27.942 27.586
Max Obs. 14.165 (March 2003)

between Ŷ new(t) and Ŷ new
(i) (t) (see, e.g., the difference between curves in

Figure 6). All 10 observed absolute difference functions are shown in the left
panel of Figure 7.

The percentiles of each vector of absolute differences for each curve are
plotted the right panel of Figure 7, showing the observations whose influence
persisted over a long duration. At the lower percentiles, this right panel shows
no pronounced differences across curves; however, the red curve representing
the February 2020 flood event begins a noticeable increase around its 80th
percentile, and the green curve depicting the March 2003 event begins a sharp
increase shortly thereafter. The area under each curve indicates which of these
two observations has the most overall impact on the October 2015 Cedar Creek
reconstruction based on the magnitude and duration of the difference. Table 3
provides these AIP values for each flood event.

These results show that the February 2020 flood event was the most
influential when we account for the duration of the influence. However, the
bootstrapped percentiles of our approximate null distribution of AIP , given
in Table 4, indicate that in terms of AIP , none of the prior flood events were
significantly influential on the reconstruction of the October 2015 Cedar Creek
stage. These results have several explanations. The first reason could be that
Pittman et al. [12] intentionally aligned the predictor curves to best resemble
the out-of-sample October 2015 Congaree River curve, specifically to ensure
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Fig. 7: All 10 absolute difference curves (left) and percentiles of absolute
differences (right) between the October 2015 reconstruction using all 10 obser-
vations and when each observation was removed. In each panel, the green curve
is from the March 2003 event and the pronounced red curve is from the Febru-
ary 2020 event.

Table 3: The area (AIP ) under each curve in Figure 7 (right).

Event AIP
August 1995 14.615
February 1998 3.909
March 2003 14.668
May 2003 11.146
September 2004 9.475
March 2007 14.689
February 2010 3.868
May 2013 5.495
November 2018 10.201
February 2020 18.200

that none of the 10 events carried too much weight and that the reconstruc-
tion was accurate. These results suggest that the landmark alignment method
of Pittman et al. [12] was successful. Additionally, the simulation study in the
previous section indicated that when N = 10, it takes a very influential obser-
vation to surpass the 95th percentile, since the average power was around 0.60
when λ was far from 1, so it is possible that the lack of significantly influential
curves was also a result of the small sample size.
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Table 4: AIP percentiles from each 5000 bootstrapped river stage observa-
tions along with the observed maximum of each metric in the river stage data
context. Note that α = 0.5 is most appropriate to use given the small sample
size N = 10.

Percentile α = 0 α = 0.5
90% 18.168 19.668
95% 22.949 25.282
99% 33.374 36.747
Max Obs. 18.2 (Feb. 2020)

6 Application: Air and Water Temperature

We calculated our influence measures and applied our method on an air and
water temperature dataset coming from 35 weather stations along the US
coastline in 2020. This dataset was studied by Pittman and Hitchcock [7]
in the context of functional regression influence for in-sample prediction and
estimation of regression coefficients. We obtained the data from the National
Data Buoy Center [15]. These 35 stations are located all around the United
States coastline, including the East Coast, West Coast, Gulf of Mexico, Alaskan
coastline, and Hawaii (map of specific locations provided in the Supplementary
Material).

Each station’s data contained roughly 87,600 temperature measurements in
6-minute intervals across 2020. To be eligible for inclusion, the station’s air and
water temperatures had to be at least 90% non-missing. Then we preprocessed
the data, which included linear interpolation to fill in any missing record and
presmoothing each observation to remove the day-to-day variability and focus
on the yearly trends. Lastly, without disrupting the underlying relationship
between the air and water temperature curves, we resized the length of each
smoothed discretized curve to 1000 equally-spaced observations across the year
to facilitate the functional calculations. Figure 8 provides all 35 air and water
temperature curves used in the model, which we represented using 21 B-spline
basis functions. Note that the low gold curve in Figure 8 is from Red Dog
Dock, Alaska, which is the most northern station used in the sample.

We then used air temperature to predict concurrent water temperature
throughout the calendar year. In this study, we had 35 complete air and water
temperature functional observations, and we introduced 5 out-of-sample obser-
vations that had available air temperature data but incomplete or completely
missing water temperatures. Using the 35 complete air and water temper-
ature observations, we found estimates β̂0(t) and β̂1(t) for the concurrent
model from Section 2.1 and predicted the five missing stations’ water tem-
perature functions using each the known air temperature functions at those
stations. Using Ŷ new(t) and Ŷ new

(i) (t), we calculated each of the 35 observa-
tions’ ∆i, i = 1, . . . , 35 for each of the five out-of-sample stations. Note that the
predicted water temperature of a held-out in-sample station using the other
34 stations is generally very close to the true water temperature of the omit-
ted 35th station. The complete results are given in Table A1. Red Dog Dock
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Fig. 8: All 35 smoothed air (left) and water (right) temperatures used in the
model.

has the highest ∆ for each of the five out-of-sample observations; it was so
much larger than the rest that there is little doubt that this observation has
massive influence on the predicted values. This station corresponds to the gold
curve in Figure 8 which has a clearly low air temperature during the winter
months compared to the other 34 locations, whereas Red Dog Dock’s water
temperature is only slightly lower than the rest. Note that which specific out-
of-sample observation that was considered greatly affected the magnitude of
∆, indicating that using a universal threshold to judge ∆ values is not appro-
priate. Like Red Dog Dock, Prudhoe Bay in Alaska had a low air temperature
with a moderate water temperature, and the values of the ∆i were large for all
35 locations corresponding to the Prudhoe Bay prediction. Using the approx-
imate null distribution from the bootstrap is necessary to judge significant
influence on prediction of some particular response curve.

With a moderate sample size N = 35, using either α = 0 or α = 0.5
in our weighted bootstrap method may be appropriate; however, given the
large magnitude of ∆ for the Red Dog Dock station for each out-of-sample
observation, we suggest α = 0.5 since it dampened the effect of that observation
on the approximate null distribution, facilitating testing whether any other
stations significantly influenced the prediction.

We applied the weighted bootstrap method (with B = 100) independently
for each of the five target external observations and approximated a null dis-
tribution of ∆. Table 5 gives the resulting 90th, 95th, and 99th percentiles.
The clearest conclusion from Table 5 is that regardless of the target observa-
tion, Red Dog Dock (observation 31) had a significantly large ∆, falling above
the 99th percentile for all five out-of-sample observations. Note that differ-
ent functional observations in the sample provide the second largest observed
∆ depending on the target observation, but in some cases, that second-
most-influential observation is also highly influential on the predicted water
temperature curve of the out-of-sample location. For predicting the Ship John
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Table 5: Percentiles from an approximate null distribution of ∆ for each of
the five target observations and the highest and 2nd highest observed ∆ for
each observation.

Adak Island Kahului Prudhoe Bay Rockport Ship John Shoal

α = 0
90% 5.22 4.91 9.63 3.94 2.52
95% 7.02 6.17 12.43 4.91 3.77
99% 22.41 15.24 88.64 8.07 8.50

α = 0.5
90% 7.36 4.80 12.64 3.74 2.52
95% 10.43 6.87 16.68 4.99 3.56
99% 20.90 10.23 30.64 9.66 7.08
Max Obs. 26.88 (31) 24.66 (31) 101.58 (31) 9.82 (31) 16.90 (31)
2nd Highest 7.15 (29) 6.81 (19) 11.7 (34) 5.7 (14) 3.87 (7)

Shoal water temperature, the Boston observation’s ∆ was above the 95th per-
centile, indicating a significant amount of influence on the Ship John Shoal
prediction. For the Kahului prediction, the Lake Worth Pier observation’s ∆
was slightly below the 95th percentile, indicating a moderate influence on the
Kahului prediction. For the Rockport prediction, the Fernandina Beach obser-
vation’s ∆ was well above the 95th percentile, showing significant influence on
the water temperature prediction at the Rockport station.

Lastly, we calculated AIPi of each of the 35 sampled observations for
each of the five out-of-sample stations. We first calculated the predicted water
temperature using all 35 observations for each of the five target locations
independently, and then did likewise with each of the 35 observations in turn
sequentially removed. We found the percentiles of the absolute differences as
described in Section 2. The plot of the percentiles of absolute differences for
one out-of-sample location, Adak Island, is given in Figure 9. The other four
target observations’ absolute difference percentiles plots are very similar. The
area under each curve yields the AIP of each of the 35 observations for each
target observation (provided in Table A2).

As it did with ∆, Red Dog Dock had the largest AIP for all five target
observations. This suggests that the observation has a large impact on the
water temperature prediction at each of the five target locations. To confirm
the formal significance of its influence and investigate the potential influence
of other observations, we independently carried out the weighted bootstrap
method to approximate the null distribution of AIP for each target obser-
vation. Given the large magnitude of Red Dog Dock’s AIP compared to the
others’, we suggest using α = 0.5. Table 6 provides the approximate null dis-
tribution’s percentiles using α = 0 and α = 0.5, respectively, along with the
largest and second largest observed AIP .

When using α = 0.5, for each target observation, Red Dog Dock’s AIP was
well above the 95th percentile, and for every location except Rockport it was
well above the 99th percentile. This indicates that the Red Dog Dock observa-
tion was significantly influential on water temperature prediction regardless of
the target observation. Moreover, since it was substantially above the 99th per-
centile for most of the target locations, this observation should be investigated
further for possible removal, as it may have incorrectly distorted the model’s
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Fig. 9: All 35 observations’ percentiles of absolute differences between the
Adak Island water temperature prediction using all 35 observations and with
each observation removed in turn. The gold curve is the Red Dog Dock obser-
vation’s results.

prediction of water temperatures. Once we dampened the effect of Red Dog
Dock on the null distribution by using α = 0.5, the Fernandina Beach AIP
was above the 90th percentile for predicting Kahului and the 95th percentile
for predicting Rockport, indicating that it also had significant influence on
the prediction of water temperatures at these locations. The Boston station’s
AIP was above the 95th percentile for predicting the Ship John Shoal water
temperature, suggesting that it (along with Red Dog Dock) was influential.

7 Conclusion

One application of functional data analysis is to use a concurrent functional
relationship between sets of observations to predict an out-of-sample (target)
observation’s response. Our new measures of influence, ∆ and AIP , offer a
pragmatic way to detect functional observations that have a large impact on
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Table 6: Approximate null distribution percentiles of AIP for each target
observation for α = 0 and α = 0.5 along with the largest (Red Dog Dock) and
2nd largest observed AIP given.

Adak Island Kahului Prudhoe Bay Rockport Ship John Shoal

α = 0
90% 12.87 11.987 24.21 10.33 6.38
95% 17.62 15.35 31.02 13.004 9.36
99% 50.21 24.65 109.71 19.90 25.68

α = 0.5
90% 18.41 11.31 30.35 9.92 6.29
95% 25.98 16.06 40.19 14.57 8.40
99% 44.65 26.52 80.29 24.42 16.18
Max Obs. 64.81 43.23 190.87 22.51 32.39
2nd Highest 15.89 (29) 14.33 (14) 25.83 (34) 15.42 (14) 10.57 (7)

specific predictions of target response curves. Additionally, simulation shows
that our weighted bootstrapping approach performs well in identifying whether
the most influential observations truly have a significant impact on the pre-
diction. In both the river stage and air and water temperature examples, we
sensibly identify certain observations as more influential than the rest, and then
the bootstrap method confirms whether their influence is significantly large,
further illustrating that our method satisfactorily identifies functional observa-
tions in the concurrent model that influence the prediction of an out-of-sample
response curve.

Supplementary Information. The Supplementary Material includes plots
of the reconstructed October 2015 Cedar Creek stage function based on fits
with and without each flood event and a table and a map of all 35 locations
in the air and water temperature dataset.
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Appendix A Tables for Air and Water
Temperature Example

Table A1: ∆i influence measure for all 35 observations for all five locations
with missing water temperatures along with the average for each of them.

Location
Adak Island
AK

Kahului
HI

Prudhoe Bay

AK

Rockport

TX

Ship John Shoal

NJ Average
1 Amerada Pass, LA 1.12 5.07 5.25 4.42 1.64 3.50
2 Atlantic City, NJ 1.85 1.05 3.58 1.29 1.74 1.90
3 Bar Harbor, ME 4.38 1.54 7.66 0.99 2.26 3.37
4 Bay Waveland Yacht Club, MS 0.92 2.40 2.49 2.28 0.94 1.81
5 Beaufort, NC 0.45 1.09 0.80 1.20 0.85 0.88
6 Bishops Head, MD 2.02 1.03 3.78 1.37 1.89 2.02
7 Boston, MA 3.79 2.83 7.60 3.32 3.87 4.28
8 Bridgeport, CT 2.84 1.08 5.78 1.21 2.24 2.63
9 Calcasieu Pass, LA 0.45 1.33 1.48 1.28 0.72 1.05
10 Charleston Cooper River Entrance, SC 0.36 1.02 0.92 1.04 0.63 0.79
11 Clearwater Beach, FL 1.49 3.88 4.87 3.96 1.96 3.23
12 Cordova, AK 3.80 0.82 6.44 0.69 1.36 2.62
13 Crescent City, CA 4.93 0.60 6.37 0.82 1.38 2.82
14 Fernandina Beach, FL 3.10 5.16 7.71 5.74 2.06 4.76
15 Fort Pulaski, GA 0.39 1.10 0.96 1.09 0.64 0.84
16 Johnny Mercer Pier, Wrightsville Beach, NC 0.69 1.29 0.87 1.21 0.91 0.99
17 Ketchikan, AK 3.62 0.38 5.20 0.56 1.14 2.18
18 King Cove, AK 4.75 0.80 8.51 1.01 1.90 3.39
19 Lake Worth Pier, FL 0.90 6.81 10.99 4.57 0.84 4.82
20 Mokuoloe, HI 0.84 5.22 8.97 3.56 0.78 3.87
21 Naples, FL 0.83 3.30 5.02 2.68 1.00 2.57
22 Old Port Tampa, FL 0.97 3.31 4.30 3.06 1.42 2.62
23 Oregon Inlet Marina, NC 0.71 0.88 0.82 0.96 0.86 0.85
24 Panama City Beach, FL 0.74 2.79 1.98 2.38 1.27 1.83
25 Port Angeles, WA 4.24 0.44 5.92 0.46 1.44 2.50
26 Port Chicago, CA 1.92 1.38 2.20 1.22 1.21 1.59
27 Portland, ME 2.80 1.39 4.74 1.23 1.81 2.39
28 Port Isabel, TX 0.42 1.87 2.60 1.40 0.56 1.37
29 Port Orford, OR 7.15 1.22 9.26 0.99 2.09 4.14
30 Port San Luis, CA 2.37 2.70 2.69 2.42 1.86 2.41
31 Red Dog Dock, AK 26.88 24.66 101.58 9.82 16.90 35.97
32 Sand Island, Midway Islands 0.31 2.76 4.08 1.95 0.56 1.93
33 Santa Monica Pier, CA 2.14 1.41 2.66 1.08 1.02 1.66
34 Skagway, AK 5.12 2.31 11.71 0.92 2.69 4.55
35 Westport, WA 4.18 0.45 5.65 0.63 1.41 2.47

https://waterdata.usgs.gov/sc/nwis/uv?site_no=02169625
https://waterdata.usgs.gov/sc/nwis/uv?site_no=02169625
https://waterdata.usgs.gov/sc/nwis/uv?site_no=02169672
https://waterdata.usgs.gov/sc/nwis/uv?site_no=02169672
https://www.ndbc.noaa.gov/obs.shtml
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Table A2: AIP influence measure for all 35 observations for all five locations
with missing water temperatures along with the average for each of them.

Location
Adak Island
AK

Kahului
HI

Prudhoe Bay

AK

Rockport

TX

Ship John Shoal

NJ Average
1 Amerada Pass, LA 2.69 12.51 12.39 11.20 4.34 8.63
2 Atlantic City, NJ 4.58 2.36 7.96 2.96 4.39 4.45
3 Bar Harbor, ME 11.57 3.33 20.56 1.70 6.03 8.64
4 Bay Waveland Yacht Club, MS 2.01 6.07 6.49 5.96 2.47 4.60
5 Beaufort, NC 1.22 3.11 1.78 3.34 2.39 2.36
6 Bishops Head, MD 4.84 2.84 8.43 3.80 5.02 4.99
7 Boston, MA 10.58 5.40 19.07 6.76 10.58 10.48
8 Bridgeport, CT 7.78 2.72 14.44 3.24 6.39 6.91
9 Calcasieu Pass, LA 1.15 3.39 3.39 3.38 1.71 2.60
10 Charleston, Cooper River Entrance, SC 0.86 2.69 2.13 2.73 1.58 2.00
11 Clearwater Beach, FL 3.76 11.89 14.43 11.93 5.03 9.41
12 Cordova, AK 9.75 1.78 16.94 1.63 3.36 6.69
13 Crescent City, CA 11.09 1.53 14.97 2.08 3.52 6.64
14 Fernandina Beach, FL 7.10 14.34 20.35 15.42 5.30 12.50
15 Fort Pulaski, GA 0.89 2.66 2.01 2.64 1.57 1.95
16 Johnny Mercer Pier, Wrightsville Beach, NC 1.34 2.97 1.35 2.88 2.10 2.13
17 Ketchikan, AK 8.49 0.88 13.35 1.19 2.92 5.37
18 King Cove, AK 12.83 2.07 23.30 2.42 4.69 9.06
19 Lake Worth Pier, FL 2.16 13.92 21.45 9.94 1.96 9.89
20 Mokuoloe, HI 2.12 11.67 17.87 8.85 2.05 8.51
21 Naples, FL 2.27 8.63 12.35 7.65 2.50 6.68
22 Old Port Tampa, FL 2.57 9.70 11.88 9.23 3.74 7.42
23 Oregon Inlet Marina, NC 1.57 2.23 1.93 2.42 2.18 2.07
24 Panama City Beach, FL 1.77 7.40 5.32 6.71 3.52 4.94
25 Port Angeles, WA 9.65 0.94 14.17 1.06 3.47 5.86
26 Port Chicago, CA 4.39 3.78 4.59 3.38 3.35 3.90
27 Portland, ME 7.22 2.68 12.47 1.94 4.57 5.77
28 Port Isabel, TX 0.97 4.40 5.52 3.55 1.44 3.18
29 Port Orford, OR 15.89 3.10 21.15 2.50 5.37 9.60
30 Port San Luis, CA 5.80 5.84 6.07 5.12 4.29 5.42
31 Red Dog Dock, AK 64.81 43.23 190.87 22.51 32.39 70.76
32 Sand Is., Midway Islands 0.55 5.88 7.66 4.57 1.46 4.02
33 Santa Monica Pier 4.43 3.70 5.67 2.82 2.70 3.87
34 Skagway, AK 12.94 3.83 25.83 1.95 5.66 10.04
35 Westport, WA 9.24 1.09 13.13 1.46 3.39 5.66
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