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Abstract

We investigate the possible benefits of pre-smoothing functional data
before performing a cluster analysis. A simulation study compares the ac-
curacy of clustering results based on using unsmoothed functional data—and
two smoothed versions of the data—as the inputs in a clustering algorithm.
Smoothing is usually found to produce a more accurate clustering, with the
best results arising from a novel James-Stein-type shrinkage adjustment to
the standard linear smoother. Two real functional data sets are clustered
using the competing methods to illustrate the procedure.
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1 Introduction

Functional data may be defined as data for which the measurements on each ob-
servation are part of a single underlying continuous process (e.g., a time or space
process). One example of such data are the Canadian weather data discussed by
Ramsay and Silverman [14, Sec. 7.4], in which the measurements are the daily
temperatures in Montreal over a period of 34 years. Ramsay and Silverman [13]
generally label such data as functional data, since the underlying data are thought
to be intrinsically smooth, continuous curves having domain 7.

Although the underlying processes generating the data (denoted p (2), .. ., un (%)
for a set of N data curves) are often assumed to be smooth, the data we observe
likely contain random noise. In practice, we observe these curves at a grid of n
points, tq,...,t,, so that we observe N independent vectors, each n x 1.

Our model for the generation of the functional data can be summarized as
follows (for i =1,...,N):

pi(t) = vi(t) = yi-
Here, p;(t) is the ith smooth, underlying functional process; y;(t) = u;(t) + €(t)
is the ith functional observation, which contains random noise ¢;(t); and y; =
(y;(t1), - .., yi(ty)) is the ith observed data vector, which represents a discretized
version of y;(t), recorded at the n measurement points t1,. .., t,.

Typically, in functional data analysis (a term attributed to Ramsay and Dalzell
[12]), the primary goal is to discover something about the smooth curves that
underlie the functional observations, and to analyze the entire set of functional data
(consisting of many curves). Cluster analysis is a very common type of analysis of
functional data. The goal of cluster analysis is to find groups, or clusters, in data.

The objects in a data set should be grouped so that objects in the same cluster



are similar and objects in different clusters are dissimilar [3, 7).

The simplest approach to clustering functional data is to cluster the observed
data curve without any pre-smoothing. This may be done using, for example, a
clustering method based on the pairwise dissimilarities among the curves. The
most common such methods are k-means [10] and its robust analogue k-medoids
[6]. To use such clustering methods we must specify an appropriate dissimilarity
measure for functional data. A natural dissimilarity is the squared L, distance

between the th and jth curves:

[ 1® - v e 0
,

Rather than using the raw data, we may wish to input some pre-smoothed version
of the curves (denoted fi1(t), ..., fix(t)) into the clustering algorithm. The pairwise

squared L, distances would then be

[ 1aste) = so) e ®
.

for the N “smooths.” (Since in practice, the data are recorded as discretized func-
tions, the actual dissimilarity measure used is a trapezoidal-rule approximation to
the integral, given in Section 2.) A natural question is whether this pre-smoothing
benefits the resulting cluster analysis and how much smoothing is optimal.

Note that sometimes, when the observed data are, say, hourly or daily aver-
ages, the very act of averaging, in a sense, smooths the measurements somewhat. In
other cases, the recorded data do represent genuine snapshots of the functional ob-
servation at each ¢; value. For our purposes, whether the data represent snapshots
or averages over some short interval, we treat the observed data as “unsmoothed.”

Some methods for clustering functional data recently have been presented in the

statistical literature. Serban and Wasserman [15] develop a method for clustering
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curves after tranforming and smoothing them and screening out flat curves. They
also estimate the clustering error rate. James and Sugar [5] introduce a model-
based clustering method that is especially useful when the points measured along
the sample curves are sparse and irregular. Tarpey and Kinateder [17] discuss rep-
resenting each curve with basis functions and clustering via k-means, to estimate
the “principal points” (underlying cluster means) of the data’s distribution. Abra-
ham et al. [1] propose representing the curves via a B-spline basis and clustering
the estimated coefficients with a k-means algorithm, and they derive consistency
results about the convergence of the algorithm. Tarpey, Petcova and Ogden [18]
apply methods for clustering functional data to the analysis of a pharmaceutical
study.

It seems intuitive that in the analysis of functional data, some form of smooth-
ing of the observed data is appropriate, and some previous methods [15, 5, 17, 1]
do involve smoothing. Tarpey and Kinateder [17, p. 113] pose the question of the
effect of smoothing on the clustering of functional data, citing the need “to study
the sensitivity of clustering methods on the degree of smoothing used to estimate
the functions.”

In this paper, we investigate the effect pre-smoothing functional data has on the
cluster analysis of that data. A simulation study will demonstrate that a shrinkage
type of pre-smoothing leads to a clearly improved performance in correctly group-
ing objects into their proper clusters. Two real data sets are analyzed to further

illustrate the effect of pre-smoothing on clustering.



2 Competing Methods

We will compare several approaches to clustering functional data via a simulation
study and two real data examples.

Method 1 clusters the observed data curves based on the pairwise dissimilar-
ities (1) using the k-medoids algorithm implemented by the R function pam. In
the simulation study, the actual dissimilarity measure used is the trapezoidal-rule
approximation d;; [8]. For the observed data, measured n times along the domain

[t1,t,], this is

tn_tl

a5 = 2 o) — e/ S l0e) — (0] + () — ()21,

i,je{l,...,N},i#j.

The other methods cluster a smoothed version of the data and also employ the

k-medoids algorithm, with dissimilarities d;; approximating (2), i.e.,

th, —t1

dy = 22l - /2 Yl - A+ ) - a2,

i,j€{l,...,N},i#3.

Method 2 smooths each data curve via a cubic spline basis in which the estimated
curve is a linear combination of cubic splines joined at m knots [13, pp. 48-49]. In
particular, we use a B-spline basis, which consists of compactly supported cubic
splines that aid computation. A higher value of m uses more basis functions
and yields a less smooth (more wiggly) estimated curve. We will implement the
smoothing method for various levels of m to examine the effect of different degrees
of smoothing.

Method 3 uses a James-Stein-type shrinkage smoother which is a weighted



average of the observed data vector y and a linear smooth Sy:

a
Syi+ |1 o—eoin | Sy
( ||yi—Syi||2>+( )

fori =1,..., N, where S is the smoothing matrix of a linear smoothing method (in
our case, a B-spline smoother), || - || denotes the Euclidean norm, (-), denotes the
positive part, and a is a user-chosen parameter. Following Lehmann and Casella
[9, p. 367], we let @ = n — r — 2, where r = rank(S). For a cubic spline basis
with m knots, r = m 4+ 4. We will investigate varying choices of m and thus r.
It has been shown in Hitchcock, Casella and Booth [4] that a similar Stein-type
dissimilarity estimator leads to an improvement in estimating dissimilarities for
noisy functional data, and it is reasonable to investigate whether the shrinkage
smoother also leads to improved clustering results.

We will measure the “correctness” of the clustering method by the proportion
of all possible pairs of objects that are correctly matched in the resulting grouping
of objects. (A correct match for two objects means correctly putting the two
objects in the same cluster or correctly putting the two objects in different clusters,
depending on the “truth.”) This proportion serves as a measure of concordance

between the clustering of the data set and the underlying clustering structure.

3 Simulation Study

In this section we summarize a simulation study to ascertain the nature of cluster-
ing improvement obtained by pre-smoothing. In each of 5000 replications, a sample
of N = 40 noisy functional data were generated. For each sample of curves, several
(four) “clusters” were built into the data by creating each functional observation

from one of four distinct mean curves, to which the random noise was added.
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Within the program the curves were represented in a discretized form, with values
generated at n equally spaced points along 7 = [0, 5]. Consider the following four
mean curves, such that a simulated data set consists of 10 curves derived from

each of them:

pi(t) = —sin(t —1)In(t +0.5),¢ € [0, 5] (3)
o(t) = cos(t)In(t +0.5),t € [0, 5] (4)
ps(t) = —0.25 —0.1cos(0.5(t — 1))t**/5t1/2 +0.5,t € [0, 5] (5)
pa(t) = 0.6cos(t)In(t + 0.5)v/t + 0.5, € [0, 5] (6)

These four curves, shown in Figure 1, were intentionally chosen to be similar
enough to provide a good test for the clustering methods that attempted to group
the curves into the correct clustering structure, yet different enough that they
represented four clearly distinct processes. In short, the curves were chosen so
that, when random noise was added to them, they would be difficult but not
impossible to distinguish.

From these mean curves we generated noisy functional data (observed at n = 50
points in [0,5]), by adding one of two types of random noise, one independent
across measurement points and the other dependent. The first noise structure

is independent N(0,0?) with varying o?

. The second is a stationary Ornstein-
Uhlenbeck process (in which the covariance between measurement points ¢; and
ty is 02(28) ' exp{—B|t; — t,u|}) with varying 0? and 8 = 1. The Ornstein-
Uhlenbeck error process results in an autoregressive covariance structure for the
equally-spaced discretized data in the simulation. In either case, we refer to the

unsmoothed noisy data as the “observed data.”

The simulated noisy data were smoothed using a cubic B-spline basis with a



Four mean curves for simulation study
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Figure 1: The four curves given by (3)-(6). Solid line: p;(t). Dashed line: us(t).
Dotted line: ps(t). Dot-dashed line: p4(t).



varying number of knots interspersed evenly through the data. To study how the
degree of smoothing affected clustering success, we used, variously, m = 2 knots
(a large amount of smoothing), m = 6 (moderate smoothing), and m = 16 (less
smoothing).

We also implemented the James-Stein smoothing method by adjusting the B-
spline smoother via the shrinkage method described earlier. With the James-Stein
method we again investigated the effect of the degree of smoothing on the clustering
results by varying the number of knots as described above.

We defined the pairwise dissimilarity between any two curves as the squared
L, distance (1) (or (2) for the smoothed data). We calculated these dissimilarities
for our simulated curves (actually using an approximation to account for the dis-
cretization of the simulated data). We then used the resulting dissimilarity matrix
to cluster the observed data, and we similarly calculated dissimilarities and clus-
tered each set of smoothed data. The clustering algorithm used was the k-medoids
method, implemented by the pam function in R. We examined the resulting clus-
tering structure of both the observed data and the smoothed data to determine
which clustering better captures the structure of the underlying clusters, as defined
by the four mean curves.

The simulated data curves were generated at eight equally spaced levels of o2
0.25, 0.5,..., 2.0 (or nine levels: 0.5, 0.75, ..., 2.5, for the dependent-error data).
The proportions of pairs of curves correctly matched are plotted in Figure 2 and
Figure 3 for the observed data, the B-spline smooths, and the James-Stein-adjusted
B-spline smooths.

For the independent-error data, Figure 2 indicates the clustering results are

more accurate with either form of the smoothed data than with the observed



data, with the James-Stein adjustment increasing the improvement compared to
the straightforward smoother. At low noise levels, the B-spline smoother and
the shrinkage smoother coincide and their performances are equal, while for large
o values, the James-Stein smoother outperforms the other. Note also that the
proportions are highest for m = 2 knots (and lowest for m = 16), indicating
that rather severe smoothing (adjusted via the James-Stein shrinkage) provides
the most accurate clustering.

Very similar results are seen from the simulations with the dependent error
structure (Figure 3), with the major difference being that for the dependent-error
data, the proportions of correct matches are generally higher for all methods than in
the independent-error case. Again, the key conclusion is that smoothing produces a
more accurate clustering than using the raw data, with the James-Stein adjustment
further improving the smoothing for moderate-to-large noise levels. As with the
independent-error data, a large amount of smoothing leads to a more accurate
clustering.

Note that the Monte Carlo standard error for each of these proportions is at
most 0.007 (when the true proportion of correct matches is 0.5). Based on this
standard error, the clustering improvement from smoothing is quite clear, although
the additional improvement from the James-Stein adjustment is only significant
for higher levels of o, e.g., 0 > 1.25 for the independent-error data and o > 2 for
the dependent-error data.

The k-medoids procedure is a partitioning method of clustering, in which for
a fixed number of clusters, the data objects are iteratively rearranged until a cer-
tain criterion is optimized. Another approach to cluster analysis is hierarchical

clustering, in which, for example, objects are merged one at a time in a stepwise
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Proportions of pairs of curves correctly matched (independent-error data)
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Figure 2: Solid line: Proportions based on observed data. Dotted line: Propor-
tions based on B-spline approach. Dashed line: Proportions based on James-Stein

approach.
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Proportions of pairs of curves correctly matched (dependent—error data)
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1.0

proportion

0.4
1

0.6 0.8 1.0

proportion

0.4

Less smoothing (m=16)

1.0

0.8
1

proportion

0.5 1.0 15 20 25

Figure 3: Solid line: Proportions based on observed data. Dotted line: Propor-
tions based on B-spline approach. Dashed line: Proportions based on James-Stein

approach.
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optimal manner, forming a treelike structure that may be cut off after any step to
yield a separation of the objects into a specified number of clusters. To determine
the effect of smoothing on hierarchical clustering, we conducted a similar simula-
tion study in which the curves were clustered using an agglomerative hierarchical
method implemented with the R function hclust, with the average-linkage option,
and with the clustering cut to form four clusters.

For small values of o, no significant difference in performance was seen among
the three methods. For larger values of o, the James-Stein smoothing method again
yielded the most accurate clustering, but here clustering the observed data did
better than clustering the unadjusted smooths. Figure 4 shows the proportions of
correct pairings (for both independent- and dependent-error data) for the medium-
smoothing (m = 6) case; the results for m = 2 and m = 16 were similar. The
performance of clustering the unadjusted smooths was relatively less poor when
the data were smoothed less (m = 16), indicating that oversmoothing was possibly
detrimental here. In general, however, the user cannot be certain of the proper
degree of smoothing needed, and the James-Stein shrinkage adjustment provides
an automated procedure to alleviate this uncertainty. Also, while our intention was
not to compare the merits of hierarchical and partitioning methods of clustering,
it is interesting that the hierarchical method, for this example, produces notably

higher proportions of correct pairings than the k-medoids method does.

4 Two Real Data Examples

We now investigate the effect of smoothing on the clustering of functional data by

analyzing two real data sets.
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Proportions of pairs of curves correctly matched using hierarchical clustering
Medium smoothing (m = 6), independent—error data
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Figure 4: Solid line: Proportions based on observed data. Dotted line: Propor-
tions based on B-spline approach. Dashed line: Proportions based on James-Stein

approach.
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Table 1: The 18 sampled sites, categorized according to their regions.

Region NBDC Site Number
Northeast 44004, 44005, 44007, 44008, 44013, 44018
Southeast 40014, 41001, 41002, 41004, 41008

Florida/Eastern Gulf 41009, 41010, 42003
Western Gulf 42001, 42019, 42038, 42041

4.1 Example 1: Analysis of Ocean Wind Speed Curves

First, we analyze wind speed data gathered at buoys in the Atlantic Ocean and Gulf
of Mexico. The data are available at the National Buoy Data Center (NBDC) his-
torical data page http://www.ndbc.noaa.gov/hmd. shtml at the National Oceanic
and Atmospheric Administration (NOAA) web site. We focus on wind speeds at
18 sites during the first week of 2005. Since wind is a continuous process, the speed
patterns over time can be thought of as curves. These wind speeds (in meters per
second) are recorded every hour (in fact the average wind speed for each hour is
recorded). Thus for the week there are 168 measurements. Each site is located
in one of four different regions (Northeast, Southeast, Florida/Eastern Gulf, and
Western Gulf), as classified on the NBDC web site (see Table 1). Therefore we
attempt to group the curves into four different clusters, with the “correctness”
of the clustering being measured against the known grouping. For example, the
sample curves for NBDC sites 44004 (from the Northeast region) and 41004 (from
the Southeast Region) are given in Figure 5. (The solid curves are the functional
observations, while the dotted curves represent the B-spline smooths described in
the next paragraph.)

In the data set analyzed, curves 1 through 6 belonged to the Northeast cluster,
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Figure 5: Solid line: Functional wind speed observations (meters per second) for

two sites. Dotted line: Cubic B-spline smooths of the functional observations.
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Table 2: The classification of the 18 sites into four clusters, based on observed

data, smoothed data, and James-Stein-smoothed data.

Cluster Observed Data Smoothed Data J-S Smoothed Data “True” Clustering

1 1,2,3,4,5 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6
2 68,18 7,8,18 78,18 7,8,9,10,11
3 79,0,11,13 9,10,11,12,13  9,10,11,12,13 12,13,14

4 12,14,15,16,17 14,15,16,17 14,15,16,17 15,16,17,18

curves 7-11 to the Southeast cluster, curves 12-14 to Florida/Eastern Gulf, and
curves 15-18 to Western Gulf. We clustered the observed wind speed curves into
four groups using the k-medoids method, implemented by the R function pam. We
then clustered smoothed versions of these curves, using the two different smoothing
methods: First we smoothed the data using a cubic B-spline basis having 20 knots
interspersed evenly through the data. Secondly, we then adjusted the smooths via
the James-Stein shrinkage method. Using the k-medoids algorithm, we clustered
into four groups the unadjusted smooths and the adjusted smooths. The results of
the three clusterings are shown in Table 2. The James-Stein smoothing method and
the unadjusted B-spline smooths came closest to capturing the “true” grouping of
the curves: 67.6% of the possible pairs of curves were correctly “matched” by each
of these methods. Clustering the observed data resulted in 58.8% of the pairs of
curves being correctly matched. Note that while all three methods “misclassified”
site 18, the methods using the smooths put site 6, site 7, and site 12 into more

appropriate clusters than did the method using the observed data.
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4.2 Example 2: Analysis of Expression Ratios of Yeast

Genes

As a second example, we consider yeast gene data analyzed in Alter, Brown and
Botstein [2]. The curves in this situation correspond to 78 genes, and the measured
responses are (log-transformed) expression ratios measured 18 times (at 7-minute
intervals) ¢t; = 7j for j = 0,...,17. As described in Spellman et al. [16], the yeast
was analyzed in an experiment involving “alpha-factor-based synchronization,”
after which the mRNA expression for each gene was measured over time. (In fact,
there were three separate synchronization methods used, but here we focus on the
measurements produced by the alpha-factor synchronization.)

Biologists believe that these genes fall into five clusters—labeled G1, S, S/G2,
G2/M, and M/Gl—according to the cell cycle phase corresponding to each gene.
(The letters S, M, and G denote Synthesis, Mitosis, and Gap, respectively.) For
the data set analyzed, genes 1 through 13 are believed to belong to the M/G1
group, genes 14-52 to the G1 group, genes 53-60 to the S group, genes 61-67 to the
S/G2 group, and genes 68-78 to the G2/M group.

To analyze these data, we treated them as 78 separate functional observations.
Initially, each multivariate observation on a gene was centered by subtracting the
mean response (across the 18 measurements) from the measurements. Then we
clustered the genes into 5 clusters using the k-medoids method, implemented by
the R function pam.

To investigate the effect of smoothing on the cluster analysis, first we simply
clustered the unsmoothed observed data. Then we smoothed each observation and
clustered the smooth curves. A cubic B-spline smoother, with six interior knots

interspersed evenly within the given timepoints, was chosen. The smooths were
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adjusted via the James-Stein shrinkage procedure described in Section 2, with
a = 6 here, since n — r — 2 = 6, where r = 10 is the rank of the smoothing matrix
for this cubic spline smoother.

None of the methods captured the supposed clustering structure extremely well:
Again, the clustering of the smooths came closest to capturing the “true” grouping
of the curves: 49.4% of the possible pairs of curves were correctly “matched” by
this method, both with and without the James-Stein adjustment. Clustering the
observed data resulted in 44.5% of the pairs of curves being correctly matched. For
this data set, we obtained higher proportions (over 70%) of correct matches when
grouping the curves into four (or even three) clusters, indicating that perhaps the
ostensible classification into five distinct groups of genes is questionable. The S
group is the only cluster of the five that is particularly well-defined, rendering the
formation of the five-cluster partition difficult at best.

For each of the previous two examples, we also clustered the data using the
agglomerative hierarchical method, with the clustering tree cut to four clusters
(for the wind data) and five clusters (for the yeast gene data). For both examples,
the hierarchical clustering results were virtually identical across the three methods.
For the wind data, the three sets (observed, smoothed, and James-Stein smoothed)
yielded identical clusterings, with 79.4% of pairs of curves correctly matched. The
three clusterings of the genes were nearly identical, with the observed data having
91.3% of pairs correctly matched, and the other two methods 90.8%. Although by
this measure, the hierarchical clustering performed very well, a close examination
of the partitions showed some strange results: For the wind data, site 11 was in
a cluster by itself under all three methods. For the gene data, all three methods

produced a huge cluster containing the great majority of the genes, while another
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cluster contained but a single gene. In short, conclusions based on the real data
must be tempered by the uncertainty about the true number of clusters and the

form of the “true” clustering.

5 Conclusion

We have found that some type of smoothing (most notably the James-Stein smooth-
ing) does improve clustering results. This is clearly apparent in the findings of our
simulation study, and less clear in the analysis of the two real data sets. It should
be noted, however, that the “true” clustering structure to which the competing
clusterings are compared is a far more solid gold standard in the case of the simu-
lations than in the real data examples. When one judges the competing methods,
the simulation study offers more reliable evidence about their comparative perfor-
mances.

It should be noted that often the appropriate number of clusters is unknown a
priori and must be determined from the data. In the simulations and data analyses
presented here, there was evidence specifying the correct number of clusters. In
other problems, however, investigators may need to use a method such as those in
[11] to help determine an appropriate number of clusters.

The evidence in this paper suggests that when clustering functional data, inves-
tigators are usually justified in pre-smoothing the data curves, particularly when
a partitioning method of clustering is chosen. Among the approaches considered
here, the James-Stein-adjusted smoother provides the best clustering results. In
terms of the optimal degree of smoothing, the most accurate clustering resulted
from smoothing the data substantially, and then adjusting via the James-Stein

method, which has the effect of shrinking the severe smooth back toward the ob-
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served data.

A natural reason that the pre-smoothed data are often clustered more correctly
is that the smoothed curves, rather than the noisy data, more accurately reflect
the underlying processes generating the functional observations—and implicitly
generating the clusters. A danger for investigators is that an improperly chosen
smoother may oversmooth the data. This concern is alleviated by using the James-
Stein adjustment, which offers a data-driven compromise between the smooths and
the observed data curves.

In this study, a B-spline basis smoother was chosen for its simplicity and its
natural representation as a linear smoother. Other choices of smoothing methods,
such as smoothing splines or kernel-based methods, may provide different levels of
improvement, although applying the James-Stein shrinkage might be computation-
ally less straightforward in those cases. Regardless of the choice of smoother, the

practice of pre-smoothing functional data appears beneficial in many situations.
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