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Abstract To investigate the relationship between flood gage height and precipi-
tation in South Carolina from 2012 to 2016, we build a conditional autoregressive
(CAR) model using a Bayesian hierarchical framework. A proximity matrix based
on watershed information is used to capture the spatial structure of gage height
measurements in and around South Carolina. The temporal structure is handled
by a first-order autoregressive term in the model. Several covariates, including the
elevation of the sites and effects of seasonality, are examined, along with daily rain-
fall amount. A non-normal error structure is used to account for the heavy-tailed
distribution of maximum gage heights. As part of the findings, we generally expect
a higher predicted gage level for a summer day than a winter day for days with no
precipitation, and a stronger association between precipitation and flooding can
be observed during summer compared to other times of the year.

Keywords Flood · Watershed · CAR model · Spatiotemporal Analysis

1 Introduction

During October 2-5, 2015, an extraordinary rainfall event took place in the Caroli-
nas, many parts of which observed 500-year-event levels of precipitation. Accumu-
lation of rainfall amount reached 24.23 inches near Boone Hall (Mount Pleasant,
Charleston County) by 11:00 a.m. Eastern Time on October 4, 2015. The rainfall

Haigang Liu, Corresponding author
Department of Statistics, University of South Carolina
1523 Greene St, Columbia, SC 29201
E-mail: haigang@email.sc.edu

David B. Hitchcock
Department of Statistics, University of South Carolina
1523 Greene St, Columbia, SC 29201
E-mail: hitchcock@stat.sc.edu

S. Zahra Samadi
Department of Civil and Environmental Engineering, University of South Carolina
301 Main St, Columbia, SC 29208
E-mail: samadi@cec.sc.edu



2 Haigang Liu* et al.

peaked on October 4 with a 24-hour total of 16.69 inches of precipitation; and the
total 48-hour precipitation during October 3-4 was more than 20 inches. The likeli-
hood of the rainfall amounts ranged from anywhere between a 1-in-250-year event
to a 1-in-1000-year event in the study region with some places such as Columbia
and Lexington, SC receiving more than 17 inches of rain over a four-day period
(Philips et al., 2018). Columbia, the capital of South Carolina, broke its all-time
wettest 1-day, 2-day, and 3-day periods on record (e.g., Bonnin et al., 2006). The
rainfall in Columbia far exceeded the two values of National Oceanic and Atmo-
spheric Administration (NOAA) calculated 1,000-year events of 12.8 inches and
14.1 inches, respectively (NOAA Atlas 14 volume 2; see Frederick et al., 1979).
Charleston International Airport observed a record 24-hour rainfall of 11.5 inches
(290 mm) on October 3 (Santorelli, Oct. 4, 2015). Some areas experienced more
than 20 inches of rainfall over the five-day period.

Flooding from this event resulted in 19 fatalities, according to the South Car-
olina Emergency Management Department, and South Carolina state officials said
damage losses were $1.492 billion (NOAA, U.S. Department of Commerce, 2015).
The heavy rainfall and floods, combined with aging and inadequate drainage in-
frastructure, resulted in the failure of many dams and flooding of many roads,
bridges, and conveyance facilities, thereby causing extremely dangerous and life-
threatening situations.

The rainfall event was generated by the movement of very moist air over a
stalled frontal boundary near the coast. The clockwise circulation around a stalled
upper level low over southern Georgia directed a narrow plume of tropical moisture
northward and then westward across the Carolinas over the course of four days.
A low-pressure system off the U.S. southeast coast, as well as tropical moisture
related to Hurricane Joaquin (a category 4 hurricane) was the underlying mete-
orological cause of the record rainfall over South Carolina during October 1 - 5,
2015 (NOAA, U.S. Department of Commerce, 2015).

In this article, we use geostatistical analysis to investigate the stochastic rela-
tionship and the dynamics between rainfall and flooding. Spatial statistics methods
have been frequently used in applied statistics as well as water resources engineer-
ing. The work of Thiessen (1911) was the first attempt at using interpolation
methods in hydrology. Sharon (1972) used an average of the observations from a
number of rain gages to obtain estimates of the areal rainfall. Soon after, Delfmer
and Delhomme (1975) and Delhomme (1978) applied various geostatistical meth-
ods such as variograms and kriging methods in modeling rainfall. The work of
Troutman (1983), Tabios and Salas (1985), Georgakakos and Kavvas (1987), Isaaks
and Srivastava (1989), Kumar and Foufoula-Georgiou (1994), Deidda (2000), Fer-
raris et al. (2003), Ciach and Krajewski (2006), Berne et al. (2009), Ly et al.
(2011), and Dumitrescu et al. (2016) further advanced the application of geosta-
tistical methods in rainfall prediction. The theoretical basis of the geostatistical
approach was strengthened using Bayesian inference via the Markov Chain Monte
Carlo (MCMC) algorithm introduced by Metropolis et al. (1953). MCMC was sub-
sequently adapted by Hastings (1970) for statistical problems and further applied
by Diggle et al. (1998) in geostatistical studies.
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This article is arranged as follows: In Section 2, we provide an overview of our
use of data munging to obtain the precipitation and gage height data, since the
scraping, cleaning, aggregating and transforming of data constitute a major part of
our study. Section 3 discusses the binary adjacency matrix, which is pivotal to the
conditional autoregressive model since it accounts for the spatial correlation based
on watershed information. In Section 4, our model fitting approach and results are
detailed, including a remedy for some noted heavy-tailed error behavior. Lastly,
we compare our results using the conditional autoregressive model with results
using other popular models such as random forest (RF), based on metrics like
mean square error.

2 Data Sources

In this section, we discuss our data sources and the necessary data munging steps
we used in our study. We primarily cover variables such as daily rainfall and gage
height, since we are interested in exploring the dynamics between them. Additional
explanatory variables like the elevation of observing stations are collected as well
since they may contribute to the prediction of gage height. Lastly, we mention the
watershed information briefly since it is used in defining the proximity matrix. A
detailed discussion of this can be found in Section 3.

2.1 Precipitation

The National Weather Service (NWS) collects precipitation data at 12 Contigu-
ous United States (CONUS) River Forecast Centers (RFCs). The precipitation
is recorded using a multisensor approach. Hourly estimates from weather radars
are compared to ground gage reports, and a correction factor is calculated and
applied to the radar field (Daly et al., 2001). For areas where radar coverage
is not accessible, satellite precipitation estimates can be used to construct the
multisensor field (Daly et al., 1994). Note that this method has been applied to
South Carolina and most other eastern states, whereas a different method is used
to process precipitation data in mountainous areas west of the Continental Divide.

The precipitation data are then mosaicked into a gridded field with a spatial
resolution of four by four kilometers. The record is an accumulation of 24-hour pe-
riods and 1200 GMT is used as the ending time for a 24-hour total. Spatially, the
original dataset extends well beyond the U.S. border, most notably north of Wash-
ington and Idaho and west of Texas, in order to model rivers that flow into the
United States. However, only the observations within South Carolina and nearby
states are retained in our study since the rainfall far outside the state is unlikely to
have a major effect on flood gage heights in the short term. Available data dates
back to 2004 and still is actively updated by NWS. Rainfall values from 2012 to
2016 (inclusive) were retrieved for our study.

The raw data are archived in https://water.weather.gov/precip/archive/.
The major challenges of handling this dataset are parsing the raw data (in NetCDF
format) and filtering out values from irrelevant regions and dates. Section 2.6 is a

https://water.weather.gov/precip/archive/
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brief introduction of our proposed approaches to streamline the data preprocessing
steps by developing a Python library.

2.2 Gage Height

Gage height (also known as stage) is the height of the water in the stream above a
reference point. Gage height refers to the elevation of the water surface in the spe-
cific pool at the streamgaging station, not along the entire stream (USGS, 2011).
Gage height also is not exactly the same as the depth of the stream. Since the
stage baselines are set in a case-by-case manner across locations, we subtract the
station-wise historical median (the median gage height for each location, over a
10-year period) from each gage height measurement to make the measurements
comparable (see Section 4 for details). This is done as a preliminary centering step
before we fit the model.

The U.S. Geological Survey (USGS) provides an archive of approximately 1.9
million observation sites of all kinds in all 50 states, the District of Columbia,
Puerto Rico, the Virgin Islands, Guam, American Samoa, under theWater Data

for the Nation portal on its website. More than 1000 such sites can be found within
the border of South Carolina. However, the site count is drastically reduced when
we focus on locations measuring surface water and exclude those that have ceased
functioning. Eventually, we have approximately 150 to 200 locations (depending
on the timeframe) within South Carolina that give a valid reading of the gage
level on a daily basis. One can either use the interface provided by USGS or the
data.download_flood() function from our Python library (Section 2.6) to down-
load the data. The former comes with a graphical user interface but may be harder
to maneuver when multiple sites are needed. The latter, on the other hand, allows
user customization to a greater degree.

Notably, the precipitation and the gage height are measured in different loca-
tions, since the former are measured in gridded fields and the latter are located at
major rivers and dams. We implemented a “blurry lookup” approach to combine
the two pieces of information. For readers familiar with SQL, the algorithm is sim-
ilar to a left join, where all rows in the left table (gage height) are retained, and on
the right (precipitation) only records with matching keys are kept. This is different
from a typical left join in that although a latitude and longitude pair serves as
the key, typical merging is not feasible due to the location mismatch. Hence, the
merging is done by finding the nearest neighbor. For each row (location i) in the
gage height table, we find a location j in the precipitation table that is closest to
it. We add the rainfall information at location j to location i for each i in the left
table. Admittedly, this is not ideal since the precipitation and gage height are not
from the exact same location, but the high resolution of the precipitation data
(4× 4 km) makes this issue less critical.

Additionally, since a fair amount of records are missing in the dataset, we
first calculate the missing data ratio, which is the percentage of days with miss-
ing records over the total number of days during the aforementioned time span
(2012-2016). We discard the location if the missing data ratio is beyond a certain
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threshold. We strike a balance between a larger sample size and better data com-
pleteness with the help of Figure 1, which shows how many locations are retained
for different time spans and thresholds. Note that the x-axis is number of years
from 2016 counting backwards. For instance, there are 120 locations retained in
the dataset for 2016 with a 95% complete-data threshold. Based on Figure 1, we
pick 90% as the complete-data threshold for a time span of five years, since further
increasing the threshold leads to a significant decrease in the amount of available
gaging stations.

Fig. 1 The number of available stations based on different complete-data threshold. The x-
axis is the number of years from 2016 counting backwards; the y-axis is the number of available
location.

Imputation for the remaining locations is based on the temporal adjacency. In
other words, to fill the missing gage height values on certain dates, the weighted
average of values from neighboring dates is used, that is

Yt =
wt−2

w∗ Yt−2 +
wt−1

w∗ Yt−1 +
wt+1

w∗ Yt+1 +
wt+2

w∗ Yt+2,

where Yt is the missing value at time t and w∗ = wt−2 + wt−1 + wt+1 + wt+2. We
set wt−1 = wt+1 = 2 and wt−2 = wt+2 = 1 since observations closer in time to the
missing value should be more informative. Alternatively, one can fill the missing
values based on spatial closeness, but we argue that the gage height measurements
in the same location may change quite steadily and continuously. Filling missing
data spatially is less ideal since doing so would involve pooling together different
observation locations, which are associated with varying gage baseline levels and
landscapes.

2.3 Elevation

The elevation information is obtained based on the Shuttle Radar Topography
Mission (SRTM), which is an international research effort that obtained digital
elevation models on a near-global scale from 56◦S to 60◦N (Farr et al., 2007). The
30-meter topographic data products are publicly distributed by the USGS along
with the 90-meter data. These data are made available via an Earth Explorer
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on the US Geological Survey website in a .tiff format. We retrieve the eleva-
tion information from the 90-meter data for the aforementioned gage locations by
matching the latitude and longitude. Elevation of the nearest neighbor is used if
an exact match cannot be found.

2.4 Other Covariates

Besides the precipitation and elevation, we also include three dummy variables to
account for the seasonality in the data. The three dummy variables respectively
take values 1 if the data record is from the spring (March through May), summer
(June through August), or fall (September through November), and 0 otherwise.
More importantly, interaction terms of the season indicator and precipitation are
included, so that we can explore whether a difference in rainfall effect on flood
levels exists across seasons. Specifically, if the interaction variable between spring
and precipitation manifests itself as positive and significant, one can conclude that
during March through May, rainfall increases are likely to lead to an even greater
average rise in gage heights than in the baseline season (winter).

2.5 Basins and Watersheds

The watershed information is pivotal to our model in a way that is different from
elevation or precipitation. Rather than entering the model as a covariate, the wa-
tershed membership is used for the adjacency matrix W, whose definition can be
found in Section 3, along with a more detailed account of the watershed system.
In this section, we focus on preprocessing such information into a well-structured
format.

USGS hosts the watershed information by state on Amazon Web Services
(AWS), which is publicly available. It is a repository of contour files with varying
sizes. A 4-digit hydrologic unit code (HUC) is less localized and covers a larger
area than a HUC6, for example. We use the contour information to define the wa-
tershed membership. Practically, a categorical variable with the watershed name
is added for each available location. We decide to use the 6-digit hydrological
unit to categorize all available locations into four regions. We discuss this more in
Section 3.

2.6 Miscellaneous Code

A Python library, climate_data_toolkit, is developed in parallel with our study,
which accomplishes two goals. First, we intend to streamline the process of down-
loading and preprocessing raw data from different sources. Rather than using vary-
ing user interfaces for different databases, one can achieve the same result nearly
instantly by function calls like get_flood(). Second, we package our models that
we use in Section 4 with a user-friendly interface. Hence, a compilation of a few
Python modules, or, a library, is a natural choice for this purpose. In addition, we
also have a plotting system, which is a handy tool to visualize spatial data, since
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it can display spatial elements such as markers and contours on top of an Open-
Street Map in a manner reminiscent of the R package ggplot (Wickham, 2019).
The Python library is hosted on Github, and users can find the source code and
help documents at https://github.com/HaigangLiu/spatial-temporal-py. Alter-
natively, the package also supports pip install, which is a convenient command
line tool for package management.

3 Adjacency Matrix and Watershed

The concept of the adjacency/proximity matrix W, first introduced by Cressie
(1993) in areal data analysis, is pivotal to reflect the dependence among nearby
locations. The entries wij in the adjacency matrix describe the connection between
location i and j in some fashion. Typically, one builds the adjacency matrix based
on either a distance or a binary status. For instance, one can define wij = 1 if
i and j share some common boundary and 0 otherwise. Alternatively, wij could
reflect “distance” between units. Further modifications can be made as well. For
instance, we could set wij = 1 for all i and j within a specified distance. Or, for
a given i, we could define wij = 1 if j is one of the K nearest (in distance) neigh-
bors of i. In the context of our study, we define the adjacency matrix based on
the watershed information since it serves as an indicator of flood activity and its
domain. Specifically, if two locations i and j are within the same watershed, then
wij = 1 and wij = 0 otherwise.

A watershed is an area of land where rainfall accumulates and drains off into
a river, bay or other body of water (Betson et al., 1964). Other terms used inter-
changeably with watershed are drainage area, catchment basin and water basin.
The watersheds have different scales and the hierarchy is reflected by HUC system.
For instance, an area indexed by a two-digit code is composed of several smaller
four-digit basins. There are six levels in the hierarchy, represented by hydrologic
unit codes from two to twelve digits long, called regions, subregions, basins, sub-
basins, watersheds, and subwatersheds (Seaber et al., 1987). Figure 2 illustrates
all the six-digit and eight-digit hydrological units that are located fully or partially
in South Carolina.

Notably, basins (areas indexed by a six-digit HUC code) appear to be an ap-
propriate granularity when we investigate the watersheds in South Carolina, since
these hydrological areas are neither too dense nor sparse in terms of data points.
Table 1 summarizes the unique locations in our data set in each HUC region.
Since the HUC regions do not exactly match state borders, we retain the regions
in which the majority of observations are located in South Carolina, namely, Sa-
vannah, Santee, Edisto-South Carolina Coastal and Lower Pee Dee (Figure 2 left
panel, clockwise from left to right) in terms of HUC-6 regions. Note that the
Savannah, Lower Pee Dee and Santee watersheds are not exclusively located in
South Carolina, as there are initially formed and originated from Georgia and
North Carolina. We consider these locations outside South Carolina as part of our
data set as well when collecting flood gage height and other variables, since they
are integral parts of the watersheds and contribute to the runoff generation, as well.

https://github.com/HaigangLiu/spatial-temporal-py
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Fig. 2 Left: six-digit hydrological units in South Carolina; Right: eight-digit hydrological
units in South Carolina. Note that an area is counted even if only part of it is inside the state
border. Six-digit hydrological units are used to build our predictive model. The red shaded
area indicates the territory of the state of South Carolina.

Name Count

Santee 108

Lower Pee Dee 24

Savannah 21

Edisto-South Carolina Coastal 19

Table 1 The counts of available locations in each HUC-6 region.

Alternatively, to define the proximity matrix, one can use a river basin system
as well, which is a product of the first watershed planning activities in 1970s by
the state of South Carolina. According to the river basin system, eight mutually
exclusive areas are defined: Broad River, Savannah River, Pee Dee River, Santee
River, Catawba River, Catawba River, Saluda River, Edisto River and Salke-
hatchie River. However, we prefer the watershed system since it is not constrained
by state borders. Furthermore, based on the river basin segmentation, some river
basins, e.g., Salkehatchie, contain as few as two unique observing stations. Such
sparsity might lead to less stable parameter estimates.

4 Model Description

A neighborhood structure to reflect the spatial structure is pivotal in some spa-
tial and spatiotemporal analyses. Often, one can define the neighborhood struc-
ture based on distance from certain centroids or similarity of an auxiliary vari-
able (Cressie, 1993). In our study, watershed information is used to construct the
neighborhood structure since it outlines the domain of hydrological water move-
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Fig. 3 Major basins (HUC6) in South Carolina

ment activity, and we define measured stations within the same basin as neighbors.

The observed variables in our study include Yi, the gage height, and p ex-
planatory variables, xi = (xi1, . . . , xip). In order to compute the shifting patterns
in flood records, this research incorporated exogenous covariates such as precip-
itation, dummy variables for spring, summer and fall, as well as the interactions
between the seasonality dummy variables and precipitation into the Conditional
Autoregressive (CAR) model. In addition, the elevation of each location was con-
sidered as a covariate but not included in the final model, as noted in Section 5.3.
The Conditional Autoregressive model for the responses, Y = (Y1, . . . , Yn)

′ , is
formulated by specifying the set of full conditional distributions satisfying a form
of autoregression given by

yi|Y(i) ∼ N



x
′

iβ +
n

j=1,j ∕=i

cij(Yj − x
′

jβ),σ
2
i



 , i = 1, . . . , n,

where Y(i) = {Yj , j ∕= i}, and β = (β1, . . . ,βp)
′
are unknown regression parame-

ters. Also, σ2
i > 0 and cij are covariance parameters with cii = 0 for all i. It should

be noted that the values of the CAR parameter estimates should reflect reason-
able physical mechanisms to guarantee that the patterns observed in the period of
record are not just effects of fluctuations of runoff processes whose dynamics evolve
over longer time scales (e.g., Koutsoyiannis, 2011; Koutsoyiannis and Montanari,
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2014).

Banerjee et al. (2014) demonstrate that one can derive the joint distribution
based on full conditional distribution for Y with Brook’s Lemma. The joint distri-
bution of Y is given as Y ∼ Nn(Xβ, (In −C)−1M), where M = diag(σ2

1 , . . . ,σ
2
n)

and the elements of C = {cij}. Note that Brook’s Lemma requires M−1(In − C)
to be positive definite and M−1C symmetric, which means cijσ

2
j = cjiσ

2
i for

i, j = 1, . . . , n.

We further simplify this model by assuming M = σ2In, with σ2 > 0 and un-
known and C = αW. The parameter α can be interpreted as the unknown “spatial
parameter” and W = (wij) is a known “weight” matrix, which satisfies wij = 1 if
and only if sites i and j are neighbors. Oliveira (2010) establishes that setting up
the model with these two assumptions automatically satisfies the two aforemen-
tioned assumptions (symmetric and positive definite). Hence, the joint distribution
of Y is further reduced to Y ∼ Nn(Xβ, σ2(I− ρW)−1). Note that taking advan-
tage of the fact that I− ρW is a sparse matrix can further accelerate the MCMC
sampling. See the Appendix for more on this.

Note that this presentation of the model assumes the random error (or sys-
tematic fluctuations in model dynamics; see Clark et al., 2015) follows a normal
distribution, an assumption that should be checked when analyzing a real data
set; if this normality assumption is violated, a different error distribution could
be specified (e.g., Samadi et al., 2018). In our analysis in Sections 5 and 6, the
residuals indicated a heavy-tailed pattern, and we considered a Laplace error spec-
ification, but ended up using a t distribution for the error distribution that proved
to be proficient for South Carolina’s rainfall-runoff processes (see Samadi et al.,
2018). Otherwise, the CAR model outlined in this section was used with our anal-
ysis.

Additionally, we define the priors in a relatively non-informative way. Specifi-
cally, βp ∼ Np(0, 10

6 · I), ρ ∼ U(0, 1) and σ2 ∼ InvGamma(0.001, 0.001).

5 Model Fitting

5.1 Scaling

Scaling is implemented for the gage level measurements since baseline levels vary
drastically across locations because they are determined in a fairly arbitrary man-
ner. For instance, Station 02160991, located in the Broad River near Jenkinsville
in South Carolina, has an average gage height of more than 200 feet, while the
Waccamaw River, for example, has a much lower average gage height. To account
for the disparity, we use yij − ỹi· as the response variable, where yij is the original
gage height for location i on the jth day, and ỹi· is the median of location i over 10
years. Figure 4 is a time series plot of the gage heights of five randomly selected
locations after scaling.
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Fig. 4 Time series plot for five randomly selected gaging stations after the median level has
been subtracted off.

5.2 Autoregressive Terms

Autoregressive terms were considered for inclusion in the model with the covariates
such as precipitation since it might conceivably take days for precipitation to cause
a significant rise in the gage level. The optimal number of terms were determined
by inspecting the ACF and PACF of the residuals, along with a comparison of
mean squared errors with models with more or fewer autoregressive terms. A first-
order autoregressive term was used in the finalized model, and a detailed discussion
can be found in Section 6.

5.3 Result

We now present the model fitting results using the CAR model described in Sec-
tion 4; recall that we specify a t error distribution to account for the heavy-tailed
behavior of the random errors, as explained further in Section 6. We sample four
chains from the posterior distribution of β, τ and ρ, and 95% credible intervals are
reported as follows. Winter is used as the baseline season, and a positive estimate
for summer, for example, indicates a rise in the predicted gage height compared to
winter. Additionally, we found that elevation was not significantly related to the
gage level and thus is not included in the final model.

As seen from Table 2, precipitation has a significant effect on the flood level,
and a rise of one inch precipitation leads to an 0.25 inch increase in the gage
measurements on average during the winter season. Among all the seasons, only
summer stands out with a statistically significant effect on the gage height. A pos-
itive estimate indicates a 0.041 inch higher predicted gage level for a summer day
than a winter day, assuming the days had no precipitation. More importantly, the
interaction between the summer season and precipitation has a positive estimate,
which indicates that the effect of rainfall on gage levels are different across seasons.
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Specifically, during summer, rainfall contributes to a larger rise (0.03 inches more)
in the predicted gage level. In other words, a stronger association between precipi-
tation and flooding can be observed during summer compared to other times of the
year. Lastly, a positive estimate of α suggests that the locations within the same
watershed are positively associated, while a positive estimate of ρ indicates that an
autoregressive effect is present between different days: For example, a large gage
height at a particular location is very likely to be followed by a large gage height
measurement the next day at that location. This implies that the relationships be-
tween model parameters and covariates can reflect physical mechanisms of runoff
generation at a watershed scale. When the model parameters and the covariates
have a stochastic pattern/behavior (in time), the model structure reflects more
complex nonlinear temporal patterns and relationships between a response vari-
able and the covariates. In this context, spatio-temporal variability of the interface
needs to be deduced by meta-data such as effects of water abstraction schedul-
ing, dams’ construction and operation, etc. as recently concluded by Serinaldi and
Kilsby (2015), and Samadi and Meadows (2017).

Table 2 Parameter estimates of CAR model.

Parameter Variable Point Estimate 95% Credible Interval

β0 Intercept -0.0376 (-0.5221, 0.5193)

β1 Precipitation 0.2455 ( 0.1227, 0.4484)

β2 Spring 0.005 (-0.0312, 0.0329)

β3 Summer 0.0413 (0.0018, 0.081)

β4 Fall -0.0425 (-0.0793, 0.0018)

β12 Spring * Precipitation 0.0210 (-0.3125, 0.2919)

β13 Summer * Precipitation 0.0445 (0.021, 0.0674)

β14 Fall * Precipitation -0.0331 (-0.2134, 0.1902)

ρ Temporal Correlation 0.9007 (0.8788, 0.9826)

α Spatial Correlation 0.5194 (0.2883, 0.8584)

τ Spatial Variability 44.5587 (33.7916, 58.3599)

6 Model Diagnosis

In this section, we examine the goodness of fit of the CAR model from several per-
spectives. The autocorrelation function (ACF) and partial autocorrelation (PACF)
are employed to examine the residuals from a temporal point of view. Spatially, we
display the residuals on the map and check for signs of systematic misprediction
in any certain areas.

To examine the residuals from a temporal perspective, the residuals are grouped
based on their watershed membership, and averaged over all locations within the
watershed. The CAR model was initially fitted without autoregressive terms, and
the ACF and PACF of residuals are given in Figure 5. The slow decay in the ACF
plot and the cut-off pattern in the PACF plot suggest an addition of an AR(1)
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term in the CAR model.

Fig. 5 The ACF and PACF of residuals from the CAR model without autoregressive term.
Left panel: ACF plot; right panel: PACF plot. The x-axis is the number of lags, and the y-axis
is the correlation coefficient.

To further evaluate the effectiveness of the autoregressive model, we show a
time series plot (Figure 6, left panel) after averaging out residuals spatially. We
also calculate the 2.5% and 97.5% percentiles, and thus the shaded area indicates
the range of 95% of all residuals. No apparent autocorrelation pattern is detected,
although the last few observations indicate increased volatility in gage height. The
absence of an autocorrelation pattern is attributed to the autoregressive term,
since a CAR model without the AR(1) term gives the residual time series plot
that shows a more obvious autocorrelation pattern and more variability (Figure 6,
right panel).

From a spatial perspective, we examine the distribution of residuals by visu-
alizing them on a map with different colors representing overestimation and un-
derestimation (Figure 7). The radius of the circle is proportional to the residual.
This is a daily snapshot on October 3, 2015, from which one can conclude that the
residuals are fairly evenly distributed. Several randomly selected snapshots have
been examined during the five-year span and no significant sign of overestimation
or underestimation is observed. Additionally, one can aggregate the residuals over
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Fig. 6 The time series plot of residuals from the CAR model. The shaded area contains 95%
of residuals at each time point. Left panel: with AR(1) term. Right panel: without AR(1) term.

Fig. 7 The residuals from the CAR model on the map of SC. Gray circles indicate overesti-
mation and black circles indicate underestimation.

a time period, for instance, a year, and make a yearly residual map for inspection.
Such visualization presents a similar picture as Figure 7 and is thus omitted for
the sake of space.

Recall that our fitted model presented in Section 5 used a non-normal error
structure; we now explain that choice. If we fit a model with a normal error dis-
tribution and examine the QQ (quantile-quantile) plot (Figure 8, left panel), we
perceive a pattern that suggests heavy-tailed errors and thus a violation of nor-
mality. This is potentially due to the heavy-tailed distribution of maximum gage
heights (Figure 8, right panel). Note that the observations are plotted after the
aforementioned scaling operation. The data are also slightly skewed to the right
possibly due to occasional thunderstorms, which cause short-term, sharp and se-
vere rises in the gage heights. Such asymmetry patterns in the data are prominent
as long as the wet hydrological regime is persistent in the period of record. Instead
of normal errors, using an error structure that follows either a t or Laplace distri-
bution handles extreme rainfall values better. Specifically, we pick a t distribution
with 3 degrees of freedom since ν = 3 defines a distribution with reasonably heavy
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tails and guarantees that both expectation and variance exist. Alternatively, one
can also set ν as a hyper-parameter which can be sampled from the posterior dis-
tribution.

Fig. 8 Left: The histogram of gage heights after scaling. Right: The QQ plot residuals assum-
ing normal errors.

The t distribution where ν = 3 (right panel, Figure 9) is slightly better in
terms of its QQ plot than the Laplace (left panel, Figure 9). Hence, the estima-
tion reported in Section 5.3 was based on the model assuming that the error term
follows a t distribution with 3 degrees of freedom. Note that the parameter es-
timates would be similar for the two models assuming either of the heavy-tailed
distributions (t or Laplace).

Fig. 9 The QQ plots of residuals assuming Laplace (left) and t with 3 degrees of freedom
(right) distributions.

7 Model Comparison

It is of interest to evaluate the forecasting capability of the aforementioned CAR
model since the gage observations, in and of themselves, are time series data, and
forecasting realtime and future flood events might be helpful for early warning
systems and emergency management. We compare out-of-sample predictions for
the first week of 2017 with the ground truth and calculate the mean squared error
and the mean absolute error as metrics since such calculations can be applied to
any type of models as long as the response variables are continuous.
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In addition, we consider several other models to compare with the CAR model:
specifically, the general linear regression model, and two members of a popular
family of classification and regression methods: random forest and boosting trees.
Comparing the linear model with CAR highlights the necessity of including a
proximity matrix since a customized covariance structure is the major difference.
Random forest and boosting trees, two popular machine learning algorithms, pre-
dict the patterns in data by combining the outputs of individual trees and can
give decent benchmarks of model performance. Random forest and boosting trees
are both tree-based algorithms and entropy is used as the loss function, but the
random forest works in parallel while adaptive boosting works sequentially. Specif-
ically, a random forest obtains results by taking the average of each decision tree
prediction, while adaptive boosting builds decision trees iteratively, and the weight
of each observation is adjusted until convergence.

For a fair comparison, all three models include the same seven covariates as the
CAR model: precipitation, seasonality variables and all related interaction terms.
It is worth noting that the spatial information is handled differently between the
CAR model and the other benchmark models. Rather than defining a covariance
matrix based on the basin information, we include the water basin indicator as a
categorical variable. The mean squared error (MSE) and the mean absolute error
(MAE) are reported in Table 3. As seen in Table 3, the CAR model outperforms
the benchmark models by a considerable margin. One possible explanation is that
models such as the random forest cannot use the spatial information effectively.
This notion can be substantiated by examining the feature importance of the
random forest and boosting trees (feature importance is measured by the amount
of entropy reduced after a variable is added to the full model), since these two
models assign almost negligible importance to the watershed variables (Table 4).
On the other hand, consistent with the CAR model, the benchmark models such
as the random forest recognize precipitation as a major contributor to the flood
height (with a feature importance value of 0.6720 based on random forest, 0.4686
based on boosting trees).

Table 3 The comparison of the out-of-sample predictions.

Model MAE MSE

CAR model 0.3077 0.2903

Linear Model 1.2638 3.0411

Random Forest 1.3041 3.4282

Boosting Trees 1.5557 4.3659

8 Discussion

We have presented a spatiotemporal model for gage height in South Carolina from
2011 to 2015, a period including one of the most destructive storms in state history.
Our model accounts for the heavy-tailed pattern of the response variable and al-
lows us to determine several covariates that affect the gage height and to interpret
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Table 4 A comparison of feature importances for random forest model and boosting trees.

Watershed Random Forest Boosting Trees

Santee 0.0229 0.1751

Lower Pee Dee 0.0327 0.0133

Savannah 0.0439 0.0245

Edisto SC Coastal 0.0042 0.0441

their effects. In particular, due to the effect of interactions, a stronger association
between precipitation and flooding can be observed during summer compared to
other times of the year. Our model could be used for forecasting realtime and
future flood events, potentially aiding early warning systems and emergency man-
agement.

In addition, we developed a Python library to streamline the data preprocessing
steps. Data scraping, cleaning, aggregating and transforming steps can be done by
simple function calls. We demonstrate several reusable modules we have developed
by providing some basic examples in the Github page of our package. Our hope is
that such tools will enable straightforward employment of similar spatio-temporal
models for flood data in the future.
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A Appendix

A.1 Sparse Matrix

A sparse matrix is a matrix where most elements are zero. By contrast, a matrix is considered
dense if most elements are nonzero. A measure to quantify the sparsity of a matrix is the
number of zero-valued elements divided by the total number of elements. As a rule of thumb, a
matrix is considered sparse when its sparsity is greater than 0.5. The covariance matrix in the
aforementioned CAR model is largely based on our adjacency model, and has a sparsity of 0.86.

Once a sparse matrix is recognized, one can use specialized algorithms and data structures
to accelerate computation. This is because memory and computing power are wasted on the
zeroes if we employ a standard dense-matrix algorithm. Specifically, a dense matrix is typically
stored as a two-dimensional array, and each entry in the array represents an element aij of the
matrix. One can access any element by specifying the row index i and the column index j. In
contrast, in a typically sparse matrix representation, only the nonzero entries are stored and
thus memory use can be reduced substantially. As a tradeoff, retrieving individual elements
becomes more complex in a sparse matrix.

In practice, there are several representations of a sparse matrix. While some types stand
out for their efficient modification, such as DOK (Dictionary of Keys) and COO (Coordinate
List), others, e.g., Compressed Sparse Row (CSR), support fast matrix operations. CSR suits
our needs better since evaluating a multivariate normal distribution involves matrix multipli-
cation, and thus is implemented as part of our model.

The compressed sparse row (CSR) represents a matrix by three one-dimensional arrays:
the nonzero values, the row indices, and the column indices. Note that the row indices are not
defined in a straightforward manner. An example is given as follows to demonstrate how a
CSR representation is implemented.





0 0 0 0
5 8 0 0
0 0 3 0
0 1 0 0





The three vectors to represent the example sparse matrix is

A = [5, 8, 3, 6] IA = [0, 0, 2, 3, 4] JA = [0, 1, 2, 1].

The array A is the nonzero values, whose column indices are stored in JA. For instance,
3 is in the third column and thus the third element in JA is 2, which stands for the third
column since a zero-based index is used. On the other hand, IA contains the row information
and is defined recursively, where IA[0] = 0 and IA[i] = IA[i-1] + k. Note that k is number
of nonzero elements on the ith row in the original matrix. According to this definition, the
length of IA is m + 1 when the matrix has m columns, and the last element in IA is always
the number of nonzero values.

The sparse matrix stored in CSR is efficient in matrix-vector multiplication due to the
structure of IA and JA. For instance, multiplying [5, 8, 0,0] by another vector, say [1, 0,
9, 9], requires only retrieving nonzero values at location 0 and 1 from the second row. The
location information is conveniently stored in JA, and the length of nonzero values can be found
in IA. Since we only need to compute the dot product of [5, 8] and [1, 0], the computation
is reduced by half. In practice, we observe a six-to-ten times boost in sampler performance by
switching from a dense matrix implementation, since the adjacency matrix has greater sparsity.
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