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ABSTRACT

Functional data analysis (FDA) — the analysis of data that can be considered a set of

observed continuous functions — is an increasingly common class of statistical analysis. One

of the most widely used FDA methods is the cluster analysis of functional data; however,

little work has been done to compare the performance of clustering methods on functional

data. In this paper a simulation study compares the performance of four major hierarchical

methods for clustering functional data. The simulated data varied in three ways: the nature

of the signal functions (periodic, non-periodic, or mixed), the amount of noise added to

the signal functions, and the pattern of the true cluster sizes. The Rand index was used to

compare the performance of each clustering method. As a secondary goal, clustering methods

were also compared when the number of clusters has been misspecified. To illustrate the

results, a real set of functional data was clustered where the true clustering structure is

believed to be known. Comparing the clustering methods for the real data set confirmed the

findings of the simulation. This study yields concrete suggestions to future researchers to

determine the best method for clustering their functional data.

1. INTRODUCTION

While an extensive amount of work has been done to compare various clustering algo-

rithms, relatively little has been done in exploring how such methods perform in clustering
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functional data, that is, data that arise as curves. In recent years, the analysis of such

functional data has become increasingly common. A modern example occurs in proteomics

studies when a mass spectrometer records macromolecular expression values almost contin-

uously across a domain of mass/charge ratio values.

In particular, many scientists are using hierarchical cluster analysis to make sense of the

huge mass of data available in certain fields, genetics currently being among the most well

known of these (e.g., Eisen et al., 1998; Morley et al., 2004). Although a number of statistical

researchers have developed cluster analysis methods suited specifically for functional data

(e.g., Serban and Wasserman, 2005; Wakefield, Zhou and Self, 2003), scientists often prefer to

cluster data using traditional methods, especially hierarchical cluster analysis. This may be

because the classical approaches are well known in their fields and convenient software exists

to carry out the traditional analyses. This paper reports the results of simulation studies to

compare four methods of hierarchical cluster analysis when the data are functional.

1.1 Cluster Analysis

Cluster analysis involves sorting data objects (or items) into natural groupings based on

similarity. Grouping data is important because it can reveal information about the data

such as outliers, dimensionality, or previously unnoticed interesting relationships. In cluster

analysis there is often no prior specification about the number or nature of the groups to

which the objects will be assigned. The grouping is often done based solely on similarity

measures, and the ideal number of groups is often determined within the clustering algorithm.

These characteristics can make cluster analysis difficult, and a wide variety of algorithms

have been proposed to produce the “best” clustering of objects based on a set of observed

data.

Many commonly used clustering algorithms rely on the pairwise dissimilarities between

the objects to guide the clustering. There are many different ways of defining (dis)similarity

among objects, and the choice of dissimilarity measure depends largely on the type of data

one is working with (discrete, continuous, binary, etc.). Usually when items are clustered,

the dissimilarity between any two items is indicated by some sort of distance. Some common
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measurements of distance between two multivariate data vectors include ordinary Euclidean

distance or Mahalanobis distance. With functional data, a more appropriate dissimilarity

measure for two functions yi(t) and yj(t) measured on some domain, say, [0, T ], is the squared

L2 distance between the two curves:

d(i, j) =
∫ T

0

[yi(t) − yj(t)]
2 dt.

An important class of clustering methods is hierarchical cluster analyses. There are two

main types of hierarchical clustering methods, agglomerative and divisive. This study will

focus on agglomerative methods. An agglomerative hierarchical method begins with each

object as its own cluster. It then successively merges the most similar clusters together until

the entire set of data becomes one group.

In order to determine which groups should be merged in agglomerative hierarchical clus-

tering, various linkage methods can be used. Single linkage (Sneath, 1957) merges groups

based on the minimum distance between two objects in two groups; therefore the distance

between clusters R and Q is defined by

dS(R, Q) = min
i∈R,j∈Q

d(i, j),

where d(i, j) is the distance between the ith and jth objects.

Complete linkage (McQuitty, 1960; Sokal and Sneath, 1963) merges groups based on the

maximum distance between two objects in two groups. In other words, the distance between

clusters R and Q is defined as

dC(R, Q) = max
i∈R,j∈Q

d(i, j).

Average linkage (Sokal and Michener, 1958) merges groups based on the average distance

of all the objects in one group to all the objects in the other. The distance in average linkage

is defined as

dA(R, Q) =
1

|R||Q|

∑
i∈R,j∈Q

d(i, j),

where |R| = the number of objects in cluster R.
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Another important hierarchical clustering method is the method of Ward (1963). While

Ward’s method is similar to the linkage methods in that it begins with N clusters, each

containing one object, it differs in that it does not use cluster distances to group objects.

Instead, the total within-cluster sum of squares (SSE) is computed to determine the next

two groups merged at each step of the algorithm. The error sum of squares (SSE) is defined

(for multivariate data) as:

SSE =
K∑

i=1

ni∑
j=1

(yij − ȳi·)
2

where yij is the jth object in the ith cluster and ni is the number of objects in the ith

cluster.

There are certainly other classes of clustering methods besides hierarchical methods.

Some of these include partitioning methods such as the well-known k-means (MacQueen,

1967) and k-medoids (Kaufman and Rousseeuw, 1987) algorithms, as well as model-based

clustering methods (Banfield and Raftery, 1993). However, based on a survey of actual

cluster analyses in the scientific literature, Kettenring (2006) indicated that hierarchical

clustering was by far the most widely used form of clustering in practice. In this article, we

will compare the performances of only hierarchical methods.

1.2 Clustering Functional Data

Functional data consist of observations that are intrinsically continuous functions, with

the response measured over some domain such as time or space. Typically we have a single

functional observation (in practice, observed at discrete measurement points) for each indi-

vidual. Ramsay and Silverman (2005) provide a comprehensive introduction to functional

data analysis. Typically, each discretely observed functional datum would be converted to a

continuous functional observation via a smoothing method. In this article, we will apply a

B-spline smoother to each functional object.

Once functional data are collected and smoothed, a method such as cluster analysis

can identify patterns of variation both within and between clusters. By exploring which

observations are in each cluster, we may be able to explain the source of the variation we see

in the data by looking for common characteristics. By identifying these characteristics as
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potential explanatory factors, we can then collect new data with such factors in mind or use

either cluster analysis or supervised classification on future data to look for similar patterns.

In this study, the squared L2 distance between two curves was used as the basic dissim-

ilarity measure. Since the data in practice consisted of discrete values representing mea-

surements along continuous curves, the squared L2 distance had to be approximated using

a trapezoidal-rule approximation, where for a function h(t) (which is [yi(t) − yj(t)]
2 in our

case), the definite integral along the domain [0, T ] is approximately:

In =
T − 0

2n
[h(0) + 2h(t1) + · · ·+ 2h(tn) + h(T )],

where n is the number of measurement points used in the approximation.

1.3 Previous Comparative Work

We now briefly review some previous work that has compared the performances of clus-

tering algorithms on data types other than functional data.

Hands and Everitt (1987) examined five hierarchical clustering techniques on multivariate

binary data, comparing their abilities to recover the original clustering structure. This

paper will make similar comparisons for functional data. They controlled various factors

including the number of groups, number of variables, proportion of observations in each

group, and group-membership probabilities. All of the clustering techniques in the study were

hierarchical: single linkage, complete linkage, group average, centroid, and Ward’s method.

The simple matching coefficient, sij , was used as a similarity measure. They used two indices

of fit (roughly Euclidean distances between the true membership vector and the clustering

vector produced by the algorithm) as criteria to compare the algorithms. According to

Hands and Everitt, most of the clustering methods performed similarly, except single linkage,

which performed poorly. Ward’s method did better overall than other hierarchical methods,

especially when the group proportions were approximately equal.

Kuiper and Fisher (1975) compared six hierarchical clustering procedures (single linkage,

complete linkage, median, average linkage, centroid, and Ward’s method) for multivariate

normal data, assuming that the true number of clusters was known. They first compared the

ability of the clustering methods to recover two different samples from bivariate distributions
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with means (0, 0) and (d, 0) where d > 0. The second comparison involved a fixed number of

clusters generated from multivariate populations. The authors used the Rand index, which

gives a proportion of correct groupings, to compare the clustering methods. This index was

defined as follows by Rand (1971):

Rand =
N00 + N11

N00 + N01 + N10 + N11

where N00 counts the pairs of objects both placed correctly in different groups by a clustering

algorithm, N01 counts the pairs of objects that are not placed in the same group but should

be, N10 counts the pairs of objects that should be in the same group but are not clustered

as such, and N11 counts the pairs of objects placed (correctly) in the same group. The

Rand index serves as a measure of concordance between the true clustering structure and

the output produced by a particular clustering algorithm. The Rand index will also be used

in this study to evaluate the various clustering algorithms with functional data.

Kuiper and Fisher (1975) found that single linkage may only work well for long chain-

type clusters as opposed to bunched clusters. Ward’s method seemed to work well for equal

sample sizes, but does not work as well for unequal sample sizes from bivariate data. The

centroid and average linkage methods were quite similar, while complete linkage was most

similar to Ward’s method. In general, classification was better as the original number of

clusters was increased. For clusters of equal sizes, Ward’s method and complete linkage

worked best. With very unequal cluster sizes, centroid and average linkage worked the best.

Blashfield (1976) attempted to compare four types of hierarchical clustering methods

(single linkage, complete linkage, average linkage, and Ward’s method) for accuracy in re-

covery of original population clusters. Blashfield simulated many data sets, which were all

mixtures from different populations. Each subpopulation had a randomly chosen mean and

variance. Once the populations for a mixture were determined, the number of populations

in the mixture and the number of variables sampled from each population were randomly

selected. He used Cohen’s κ statistic (Cohen, 1960) to measure the accuracy of the clustering

methods. Blashfield compared the clustering methods for 50 distinct simulated mixed data

sets. Ward’s method performed significantly better than the other clustering procedures;
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the second best was complete linkage; average linkage gave relatively poor results.

Johnson and Wichern (2002) informally contrast various hierarchical clustering methods,

without specifying a particular data type (the implication is that they are considering multi-

variate continuous data). For instance, they note single linkage tends to perform poorly with

clusters that are truly elliptical. This problem occurs especially when clusters are elliptical

when plotted, but the ends of the clusters are geometrically close. This causes certain points

to be clustered together early in a hierarchical algorithm when in fact they should be placed

with the rest of their own ellipse. In general, clustering can be sensitive to outliers, given

that outlying objects will tend to have large pairwise distances to other objects and greatly

influence the progression of the hierarchical algorithm. Our study will pay careful attention

to the effect of outlying objects on clustering performance.

Tarpey (2007) compared several clustering methods for functional data, but in a quite

different manner than this paper. He focused on k-means clustering and examined the effect

on the clustering outcomes based on how the observed data were smoothed (using the raw

data, and data smoothed via a B-spline basis, Fourier basis, and power basis, respectively).

He concluded that the results of clustering functional data depend on how well the smooth

curves fit the raw data, but that the choice of best smoothing method depends on the true

mean curve of each cluster.

In addition, Schwaiger and Rix (2005) used a simulation study to compare two-mode

hierarchical clustering methods, which attempt to simultaneously cluster the objects and the

variables of a data set, but such cluster analyses are not considered in this article. Edelbrock

(1979) examined the performance of clustering algorithms when the hierarchical dendrogram

is cut at several places. Milligan (1980) noticed that complete linkage and Ward’s method

reacted badly when outliers were introduced into the simulated data. Hubert (1974) and

Baker (1974) separately compared single-linkage and complete-linkage clustering for several

data types and structures. Cunningham and Ogilvie (1972) compared seven hierarchical

methods based on the association between the input dissimilarity values and corresponding

distance values obtained from the final clustering hierarchy.
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An important conclusion arising from most of these studies was that the superiority of

one method over others was not uniform, but rather depended greatly on the form of the

data. We will establish analogous conclusions in the case of clustering functional data.

2. SIMULATION STUDY

2.1 Setup

This study was designed to test the performance of four hierarchical clustering algorithms

on functional data: single linkage, complete linkage, average linkage, and Ward’s method.

The data simulated varied in three ways: the groups of signal functions being used, the

standard deviation of the error added to the signal functions, and the number of objects in

each true cluster.

There were three main groups of signal functions used in this study. The functions in

each group were chosen to lie reasonably close to one another so that with the addition of

error to the functions, it would not be trivial for the clustering algorithms to partition the

resulting curves. The first group of signal functions involved some form of periodic data.

These functions are plotted in Figure 1 (top) and defined as follows:

µ1(t) = (1/28)t + exp(−t) + (1/5) sin(t/3) + 0.5, t ∈ [0, 100]

µ2(t) = (1/20)t + exp(−t) + (1/5) sin(t/2), t ∈ [0, 100]

µ3(t) = (1/15)t + exp(−t) + (1/5) cos(t/2) − 1, t ∈ [0, 100]

µ4(t) = (1/18)t + exp(−t) + (1/5) cos(t/2), t ∈ [0, 100]

[Figure 1 here]

The second group of signal functions had no periodic tendencies and were strictly de-

creasing. These functions are plotted in Figure 1 (middle) and are defined as follows:

µ1(t) = 50 − t2/500 − 7 ln(t), t ∈ (0, 100]

µ2(t) = 50 − t2/500 − 5 ln(t), t ∈ (0, 100]
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µ3(t) = 50 − t2/750 − 7 ln(t), t ∈ (0, 100]

µ4(t) = 50 − t2/250 − 4 ln(t), t ∈ (0, 100]

The third group of signal functions, all of which had a decreasing trend, had a mix of

periodic and strictly decreasing functions. These functions are plotted in Figure 1 (bottom)

and are defined as follows:

µ1(t) = −t/2 + 2 sin(t/5), t ∈ (0, 100]

µ2(t) = −t/2 + 2 cos(t/3), t ∈ (0, 100]

µ3(t) = −t2/250 − 4 ln(t), t ∈ (0, 100]

µ4(t) = −t2/250 − 2 ln(t), t ∈ (0, 100]

For each simulated data set, 40 discretized curves were generated based on the four signal

functions from the specified group. In general, the data were simulated over 201 (or 200)

points from t = 0 (or t = 0.5 for clusters containing the ln(t) function) to t = 100 in

increments of 0.5.

We added random error to the signal functions using a discretized approximation of the

stationary Ornstein-Uhlenbeck process (a zero-mean Gaussian process in which the covari-

ance between errors at measurement points tl and tm is σ2(2β)−1 exp{−β|tl − tm|}), with

varying σ2 and β = 1. The Ornstein-Uhlenbeck error process results in an autoregressive

covariance structure for the equally-spaced discretized data in the simulation. Increasing the

value of σ essentially added more random noise to the signal functions. The starting value

of the pattern of σ values explored for each group was chosen to give the various clustering

methods a “difficult” test. This value tended to be smaller for the periodic functions and

larger for the non-periodic functions. The value of σ was increased by the same increment

(0.5) across simulation settings. The values of σ explored for each group are listed in Table

1.
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Table 1: Values of σ Used for Each Group of functions

Group Values of σ

1 1.5 2.0 2.5 3.0

2 4.0 4.5 5.0 5.5

3 3.5 4.0 4.5 5.0

The final setting that varied in each simulation was the set of the simulated cluster sizes.

Every simulated data set contained a total of 40 observed functions; however, the allocation

of these 40 observations to the true signal functions was varied. There were five different

cluster size options which represented potential data scenarios. The first scenario was equal

cluster sizes, having 10 objects generated from each of the four signal functions. The next

scenario represented three equal-sized clusters and one smaller cluster (12 objects from three

of the signal functions and only four were generated from the remaining signal function). The

third scenario included two relatively larger clusters and two smaller outlying clusters (18

objects from each of two of the signal functions and 2 observations from each of the remaining

signal functions). The fourth scenario had one large cluster and three very small outlying

clusters (35 objects from one signal function, 2 objects from two other signal functions, and

1 from the last signal function). The final scenario had four different cluster sizes: one large,

two medium, and one small (20, 10, 8, and 2 observations for the different signal functions).

In order to eliminate bias, particularly in situations with unequal cluster sizes, the size for

the cluster corresponding to each signal function was randomly chosen for each simulation

of new data.

For each simulated data set, the functional observations were smoothed using B-splines

with 30 knots. This method gave stable results across all the values of σ, allowing a consistent

smoothing method to be used over the entire study. The approximate squared L2 pairwise

distances between the smoothed simulated curves were used as dissimilarities input into each

clustering algorithm. The clustering algorithms were implemented using the agnes function

in the cluster package of R (R Development Core Team, 2009). For the main portion of

this study, the hierarchical algorithm was cut off at the correct number of clusters (k = 4).
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Section 2.3 discusses a secondary simulation study in which the number of clusters was

misspecified (k = 3 and k = 5).

Once the clustering algorithm was stopped at the specified number of clusters, the Rand

(1971) index was calculated for each clustering method, to indicate the performance of the

clustering method. For each combination of signal-function group, cluster-size structure,

and σ value, 1000 data sets were generated. For each simulated data set, the Rand index

for each clustering method was calculated and stored. Based on these 1000 repetitions, the

mean Rand index was found for each clustering method. The Monte Carlo standard error

for this mean Rand index was also calculated. The mean Rand value was the criterion used

to compare the clustering methods.

2.2 Results

Tables 2 through 4 (presented in the Appendix) give the exact mean Rand values for

the four clustering methods at each of the settings we explored. For each mean Rand value,

an associated Monte Carlo standard error (MCSE) was calculated; to save space, we simply

report the maximum MCSE for each section of the tables.

The comparison of methods using the Group 1 functions (periodic in nature) is displayed

in Table 2. For almost every pattern of cluster sizes, Ward’s method had the highest mean

Rand index. Complete linkage often rated second best. The only time Ward’s method was

not superior was in the case of one very large group and three small groups (cluster sizes 35,

2, 2, 1), when average linkage did better for lower values of σ while single linkage (usually

a straggler) performed best when the noise was increased. Figure 2 (top) (for the equal-

cluster-size case) and Figure 2 (bottom) (for the case of one large cluster and three small

clusters) show the mean Rand index for different values of σ for each clustering method.

[Figure 2 here]

The comparison using the Group 2 functions (decreasing in nature) is given in Table 3.

Again, Ward’s method had the highest mean Rand index in most situations, with complete

linkage often second best. Figure 3 (top) shows how the mean Rand index varies for different

values of σ for Group 2 functions with equal cluster sizes. Again, Ward’s method does
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very poorly in the case of one large cluster and three smaller clusters, with average linkage

doing best in this specific case (see Figure 3 (middle)). Average linkage also did better

overall (much closer to Ward’s method and complete linkage) with Group 2, compared to

the periodic functions of Group 1. For instance, Figure 3 (bottom) shows that average

linkage performs best with two large clusters and two small clusters at high noise levels.

[Figure 3 here]

The comparison using the Group 3 functions (a combination of the periodic and decreas-

ing curves) is given in Table 4. The results were similar to those for the first two groups,

with Ward’s method and complete linkage usually performing best (as shown in Figure 4

(top)). In the situation with one large cluster, Ward’s method had the lowest accuracy while

average linkage had the highest, particularly with higher σ values (see Figure 4 (middle)).

Average linkage again did well, especially when there were two large cluster sizes and two

small cluster sizes (see Figure 4 (bottom)).

[Figure 4 here]

In general, Ward’s method almost always performs the best, having the highest mean

Rand index in most situations, with the exception of situations where the data contain

one or two very large groups and a few other very small groups, when average linkage

does best. While complete linkage performs well in general, it never has the highest Rand

index. Similarly, single linkage does the worst overall, except in occasional situations. For

these reasons, we do not recommend that either complete linkage or single linkage be used

when clustering functional data. In short, if the analyst suspects there may be one or two

outlying curves forming very small clusters, average linkage is recommended. Otherwise,

if the investigator suspects several clusters, all of somewhat substantial size, we strongly

recommend using Ward’s method to obtain the most accurate classification.

Overall, all methods perform better when there are no periodic trends in the data; both

Ward’s method and average linkage perform best in Group 2 and worst in Group 1. This

observation is somewhat intuitive, considering periodic functions contain more within-curve

variation, and may be more difficult to cluster accurately.
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2.3 Case of Misspecification

In practice, the true number of groups in a data set is often unknown and must be

specified by the investigator. For this reason, misspecification of the true number of groups is

a common error when using hierarchical clustering algorithms. As a secondary investigation,

a comparison of clustering methods was done for situations when the number of groups was

misspecified. The misspecifications examined were not severe; since there were four true

clusters, we examined the ramifications of setting k = 3 or k = 5 on the accuracy of the

resulting partitions. We present results for the case of equal cluster sizes and the case of

cluster sizes of 20, 10, 8, and 2. Other situations produced very similar results.

The generation of data sets was identical to the main study, except that the clustering

was stopped at the wrong number of groups (either 3 or 5). The Rand index was calculated

the same way, except that a perfect clustering is impossible in this situation, so the Rand

index could not reach 1. When comparing clustering algorithms, however, we are comparing

the Rand indices to each other and not to a perfect clustering partition.

The results were similar to those in the original simulation but depended somewhat on

whether there was under- or overspecification. Once again there were also some differences

between the different groups of data. In Group 1, when the number of groups was under-

specified at k = 3, Ward’s method had the highest mean Rand index in most situations.

This can be seen in Figure 5 (top), which shows how the mean Rand index changes over the

different values of σ for each method at equal sample sizes. Once again, complete linkage

often had the second highest mean Rand index, but was never the highest. When the num-

ber of groups was overspecified at k = 5, Ward’s method had the highest mean Rand index

in most situations. For the case when the cluster sizes were unequal, average linkage had

the highest mean Rand index at the lowest σ value. This pattern can be seen in Figure 5

(bottom).

[Figure 5 here]

For the simulations for Group 2, while Ward’s method did have the highest mean Rand

index in most situations, complete and average linkage are often much closer to Ward’s (see
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Figure 6 (top)). When the number of groups is over-specified (k = 5), Ward’s method again

performs best with equal cluster sizes. However, average linkage is much closer to Ward’s

method than for Group 1. Also, in the case of unequal cluster sizes, average linkage has the

highest mean Rand index for a low σ value, as illustrated in Figure 6 (middle).

[Figure 6 here]

The simulations for Group 3 had very similar results to Group 2, with Ward’s method

usually having the highest mean Rand index when the number of clusters is overspecified

(k = 5). Ward’s method also performs the best when the number of clusters is underspecified

(k = 3), as seen in Figure 6 (bottom).

In summary, single and complete linkage are not the best clustering methods for func-

tional data. Choosing between Ward’s method and average linkage should be done on a

case-by-case basis. Ward’s method has the highest accuracy in most situations. If the goal

of the analysis is to identify a few outlying clusters and one large cluster, however, average

linkage is the best method. It also appears that average linkage is the best choice when there

are different-sized groups and when there is a good chance of overspecification of groups, par-

ticularly when the data have fewer periodic tendencies. The performance of Ward’s method

remains more stable than that of average linkage when most of the data are periodic.

3. ANALYSIS OF A REAL DATA SET

To compare these clustering methods in practice, we examined a functional data set

originally analyzed in Alter, Brown, and Botstein (2000). Originally presented by Spellman

et al. (1998), it contained functional observations measuring (over time) the log-transformed

expression ratios of 78 yeast genes. The expression ratios were measured at 18 timepoints at

7-minute intervals. This data set fits the nature of this paper well in that biologists believe

there are five clusters (based on the cell cycle phase of each gene) of unequal sizes; the

assumed clustering structure is given in Table 5. Thus we use the Rand index to compare

the outputs of the clustering methods relative to this suspected structure.

14



Table 5: Suspected Clustering Structure for Yeast Gene Data

Cluster Name Cluster Size Observations

G1 13 1-13

S 39 14-52

S/G2 8 53-60

G2/M 7 61-67

M/G1 11 68-78

S = Synthesis M = Mitosis G = Gap

Since the shapes (rather than the vertical positions) of the functional data were the

crucial aspect on which to separate the genes into clusters, the data were initially centered

by subtracting the sample mean response at each timepoint from each observed measurement.

After the data were centered, the curves were smoothed using a B-spline smoother with 3

knots. The 78 smoothed curves are shown in Figure 7. Once the data were smoothed, a

distance matrix was calculated using the trapezoidal-rule approximation of the L2 distance

between curves. Each of the four hierarchical clustering algorithms was applied to the matrix.

Based on the clustering structure suspected by biologists, the Rand index was calculated for

each method. For each method, the resulting clustering partition, as well as the Rand index,

is shown in Table 6.

[Figure 7 here]
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Table 6: Clustering Results for Each Hierarchical Method (Yeast Gene Data)

Method Clustering Structure Rand Index

Assumed Structure {1-13}, {14-52}, {53-60}, {61-67}, {68-78} N/A

Ward’s Method {1-2, 4, 6-11, 13, 70, 74-75}, {5}, 0.7949

{3, 12, 14-52, 61-67, 69, 78}, {54-60}, {68, 71-73, 76-77}

Single Linkage {1-4, 6, 8-64, 66-75}, {5}, {7}, {64}, {76-77} 0.4006

Complete Linkage {1-4, 6-11, 13, 19, 22, 27, 30, 32, 41-42, 44, 47,

61-62, 65-66, 69-70, 74-75, 78}, {5}, {12, 14-15, 18, 21, 0.6857

24-26, 28-29, 31, 33-35, 38-40, 43, 45-46, 48, 50, 52},

{16-17, 20, 23, 36-37, 50, 52, 53-60, 63-64, 67},

{68, 71-73, 76-77}

Average Linkage {1-4, 6-16, 18-19, 21-53, 61-63, 65-67, 69-70, 74-75, 78}, 0.5951

{5}, {17, 20, 54-60}, {64}, {68, 71-73, 76-77}

Clustering partitions defined by the observation numbers in braces in the table.

The clustering results reflect our expectations based on the simulations. Ward’s method

performed the best with complete linkage second best. Average linkage did not perform

as well, unsurprising since these data have periodic tendencies. Finally, as expected, single

linkage was quite inaccurate.

We also briefly examine partitions other than the 5-cluster solution, calculating the Rand

indices for these methods when the algorithms are stopped at 4 clusters and 6 clusters

respectively, which represent misspecifications if the 5-cluster structure is the truth.

When the clustering algorithms are stopped at 4 clusters, Ward’s method has the best

Rand index (0.7972) by far, with complete linkage second best at 0.6787. Single linkage

performs the worst (Rand index of 0.3640), with average linkage (0.5788) ranking third,

again unsurprising due to the periodicity of the data.
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When the clustering algorithms are stopped at 6 clusters, Ward’s method again performs

the best with a Rand index of 0.8162. However, unlike with the 4-cluster solution, average

linkage is close behind Ward’s method with a Rand index of 0.8035. Complete linkage has

a Rand index of 0.7090, while single linkage again performs the worst with a Rand index of

0.4179.

A few objects and clusters bear closer scrutiny. All clustering algorithms appear to

identify the fifth object in its own group when the clustering methods are stopped at five

clusters. That object appears to be an outlier in cluster 1, and further investigation may be

required to see if it truly warrants its own group. (With a 4-cluster solution, Ward’s method

and complete linkage place curve 5 with other curves, but average and single linkage still

place it in its own cluster.) Generally, it appears that the true cluster 3 is well defined, being

identified relatively well by all of the clustering methods except single linkage, which put

most of the objects into one large cluster with the rest of the clusters only containing one or

two objects. The algorithms tend to merge some of the objects in clusters 1 and 5 into one

group, and the true cluster 4 tends to be subsumed into the large second cluster. In short,

the clustering results both display the idiosyncrasies of the different hierarchical algorithms

and cast some doubt over the reliability of the assumed structure as a gold standard.

4. DISCUSSION

The goal of this study was to compare the performance of four major hierarchical clus-

tering methods when applied to functional data. The Rand index was calculated for each

method at each repetition of a simulation. The mean Rand index of the simulation for each

method was compared. This index gives a proportion of pairs of objects that have been

correctly clustered in the same group or correctly clustered into different groups.

In general, Ward’s method had the highest mean Rand index in most situations, except

when there were large differences among cluster sizes. This is a similar result to those in

Hands and Everitt (1987), Kuiper and Fisher (1975), and Blashfield (1976) for other data

types. In the situation with one large cluster and three very small clusters, average link-

age performed the best. When the cluster sizes were generally different, average linkage
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performed well relative to Ward’s method, particularly when there were fewer periodic ten-

dencies in the data (a finding that relates specifically to clustering functional data). For

certain values of σ, average linkage yielded a higher mean Rand index in such situations.

While complete linkage usually performed well, it rarely performed better than all others.

Single linkage did the worst in most (but not all) cases. This is another result similar to

Hands and Everitt (1987).

Based on these findings, Ward’s method is the best choice for clustering functional data,

particularly when there are periodic tendencies in the data. Average linkage is recommended

if the suspected clustering structure has one or two very large groups, particularly when the

data are not periodic.

We found the results when the number of clusters was misspecified to be quite similar.

Ward’s method was usually the best, while average linkage performed best in some special

situations, in particular when the number of clusters is overspecified.

In our cluster analyses of 78 yeast genes, Ward’s method best recaptured the assumed

clustering structure. The confirmation of the simulation results when analyzing the yeast

data set indicates that the results of this study can be useful to researchers who cluster

functional data.
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APPENDIX

Table 2: Mean Rand Values for Four Hierarchical Methods (Group 1 functions)

σ = 1.5 σ = 2.0 σ = 2.5 σ = 3.0

Equal W: 0.9768 W: 0.8154 W: 0.6981 W: 0.6474

Sizes S: 0.6228 S: 0.3150 S: 0.3122 S: 0.3111

C: 0.9593 C: 0.7785 C: 0.6615 C: 0.6146

A: 0.9381 A: 0.6828 A: 0.4216 A: 0.3693

Max. MCSE = 0.0058

12 W: 0.9726 W: 0.8107 W: 0.6861 W: 0.6335

12 S: 0.6367 S: 0.3443 S: 0.3360 S: 0.3341

12 C: 0.9553 C: 0.7771 C: 0.6550 C: 0.6026

4 A: 0.9393 A: 0.6882 A: 0.4432 A: 0.3841

Max. MCSE = 0.0062

18 W: 0.9393 W: 0.7678 W: 0.6483 W: 0.5872

18 S: 0.7306 S: 0.4742 S: 0.4387 S: 0.4314

2 C: 0.9297 C: 0.7525 C: 0.6245 C: 0.5686

2 A: 0.9496 A: 0.7317 A: 0.5288 A: 0.4571

Max. MCSE = 0.0067

35 W: 0.7007 W: 0.5173 W: 0.4406 W: 0.4112

2 S: 0.9352 S: 0.8100 S: 0.7312 S: 0.6967

2 C: 0.7620 C: 0.5658 C: 0.4736 C: 0.4391

1 A: 0.9601 A: 0.8291 A: 0.7143 A: 0.6619

Max. MCSE = 0.0046

20 W: 0.9563 W: 0.7796 W: 0.6614 W: 0.6052

10 S: 0.6942 S: 0.4240 S: 0.4000 S: 0.3931

8 C: 0.9428 C: 0.7602 C: 0.6339 C: 0.5836

2 A: 0.9412 A: 0.7146 A: 0.5003 A: 0.4340

Max. MCSE = 0.0062

W = Ward’s method, S = Single linkage, C = Complete linkage, A = Average linkage.
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Table 3: Mean Rand Values for Four Hierarchical Methods (Group 2 functions)

σ = 4.0 σ = 4.5 σ = 5.0 σ = 5.5

Equal W: 0.9884 W: 0.9625 W: 0.9224 W: 0.8752

Sizes S: 0.8654 S: 0.7814 S: 0.5232 S: 0.3445

C: 0.9807 C: 0.9377 C: 0.8946 C: 0.8516

A: 0.9678 A: 0.8998 A: 0.8689 A: 0.8384

Max. MCSE = 0.0062

12 W: 0.9870 W: 0.9591 W: 0.9188 W: 0.8731

12 S: 0.8774 S: 0.7887 S: 0.5460 S: 0.3792

12 C: 0.9768 C: 0.9360 C: 0.8922 C: 0.8499

4 A: 0.9674 A: 0.9083 A: 0.8727 A: 0.8441

Max. MCSE = 0.0060

18 W: 0.9658 W: 0.9170 W: 0.8791 W: 0.8337

18 S: 0.8909 S: 0.8054 S: 0.6367 S: 0.5197

2 C: 0.9603 C: 0.9081 C: 0.8715 C: 0.8266

2 A: 0.9603 A: 0.9124 A: 0.8894 A: 0.8574

Max. MCSE = 0.0062

35 W: 0.7799 W: 0.6958 W: 0.6405 W: 0.5788

2 S: 0.9642 S: 0.9473 S: 0.9127 S: 0.8679

2 C: 0.8266 C: 0.7460 C: 0.6933 C: 0.6332

1 A: 0.9757 A: 0.9517 A: 0.9297 A: 0.8939

Max. MCSE = 0.0051

20 W: 0.9784 W: 0.9360 W: 0.8890 W: 0.8423

10 S: 0.8873 S: 0.8123 S: 0.6145 S: 0.4576

8 C: 0.9663 C: 0.9167 C: 0.8789 C: 0.8331

2 A: 0.9659 A: 0.9105 A: 0.8846 A: 0.8512

Max. MCSE = 0.0060

W = Ward’s method, S = Single linkage, C = Complete linkage, A = Average linkage.
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Table 4: Mean Rand Values for Four Hierarchical Methods (Group 3 functions)

σ = 3.5 σ = 4.0 σ = 4.5 σ = 5.0

Equal W: 0.9751 W: 0.9351 W: 0.8907 W: 0.8460

Sizes S: 0.8537 S: 0.7182 S: 0.5509 S: 0.3916

C: 0.9574 C: 0.9076 C: 0.8658 C: 0.8166

A: 0.9285 A: 0.8766 A: 0.8455 A: 0.7503

Max. MCSE = 0.0046

12 W: 0.9747 W: 0.9310 W: 0.8879 W: 0.8431

12 S: 0.8554 S: 0.7276 S: 0.5934 S: 0.4225

12 C: 0.9342 C: 0.9067 C: 0.8665 C: 0.8181

4 A: 0.9292 A: 0.8779 A: 0.8543 A: 0.7616

Max. MCSE = 0.0049

18 W: 0.9406 W: 0.8909 W: 0.8482 W: 0.7980

18 S: 0.8832 S: 0.7764 S: 0.6590 S: 0.5493

2 C: 0.9342 C: 0.8836 C: 0.8388 C: 0.7841

2 A: 0.9411 A: 0.8979 A: 0.8616 A: 0.7846

Max. MCSE = 0.0065

35 W: 0.7254 W: 0.6632 W: 0.6055 W: 0.5514

2 S: 0.9571 S: 0.9330 S: 0.8962 S: 0.8509

2 C: 0.7780 C: 0.7159 C: 0.6665 C: 0.6038

1 A: 0.9570 A: 0.9325 A: 0.9068 A: 0.8622

Max. MCSE = 0.0047

20 W: 0.9550 W: 0.9045 W: 0.8518 W: 0.8061

10 S: 0.8794 S: 0.7597 S: 0.6285 S: 0.4897

8 C: 0.9433 C: 0.8913 C: 0.8425 C: 0.7941

2 A: 0.9381 A: 0.8929 A: 0.8567 A: 0.7766

Max. MCSE = 0.0052

W = Ward’s method, S = Single linkage, C = Complete linkage, A = Average linkage.
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Figure 1: The four signal curves for the three groups of simulated functional data. For each

plot: Solid line: µ1(t). Dashed line: µ2(t). Dotted line: µ3(t). Dot-dashed line: µ4(t).
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Figure 2: Mean Rand values (averaged over 1000 iterations) for four methods of clustering the

Group 1 functions. (Top: Equal cluster sizes. Bottom: Cluster sizes 35, 2, 2, 1.) Solid line:

Ward’s method. Dashed line: Single linkage. Dotted line: Complete linkage. Dot-dashed

line: Average linkage.
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Figure 3: Mean Rand values (averaged over 1000 iterations) for four methods of clustering

the Group 2 functions. (Top: Equal cluster sizes. Middle: Cluster sizes 35, 2, 2, 1. Bottom:

Cluster sizes 18, 18, 2, 2.) Solid line: Ward’s method. Dashed line: Single linkage. Dotted

line: Complete linkage. Dot-dashed line: Average linkage.
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Figure 4: Mean Rand values (averaged over 1000 iterations) for four methods of clustering

the Group 3 functions. (Top: Equal cluster sizes. Middle: Cluster sizes 35, 2, 2, 1. Bottom:

Cluster sizes 18, 18, 2, 2.) Solid line: Ward’s method. Dashed line: Single linkage. Dotted

line: Complete linkage. Dot-dashed line: Average linkage.
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Figure 5: Mean Rand values (averaged over 1000 iterations) for four methods of clustering

the Group 1 functions when misspecifying the number of clusters. (Top: Equal cluster sizes,

k = 3. Bottom: Cluster sizes 20, 10, 8, 2, k = 5.) Solid line: Ward’s method. Dashed line:

Single linkage. Dotted line: Complete linkage. Dot-dashed line: Average linkage.
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Figure 6: Mean Rand values (averaged over 1000 iterations) for four methods of clustering

the Group 2 and 3 functions when misspecifying the number of clusters. (Top: Group 2,

Equal cluster sizes, k = 3. Middle: Group 2, Cluster sizes 20, 10, 8, 2, k = 5. Bottom:

Group 3, Cluster sizes 20, 10, 8, 2, k = 3.) Solid line: Ward’s method. Dashed line: Single

linkage. Dotted line: Complete linkage. Dot-dashed line: Average linkage.
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Figure 7: The 78 smoothed and centered curves in the yeast gene data set.
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