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Abstract

Cluster analysis of categorical data classifies data objects into homogeneous groups based

on the categorical outcomes recorded on each object. However, such methods may not produce

clustering partitions that accurately reflect the underlying process from which the data has

been generated, especially in cases of noisy observations and high variability within the latent

variables underlying the measurement process. In this paper a shrinkage-based statistical

smoother is used in dissimilarity-based cluster analysis to combat these problems, specifically

for tertiary data objects. Smoothing the dissimilarities in a shrinkage-based manner produces

cluster partitions that more accurately reflect the underlying process from which the tertiary

data has arisen by shrinking the dissimilarities toward model-based estimates supported by the

data set as a whole. The results, shown via simulation and a real diabetes data application, in-

dicate that the implementation of such statistical smoothing produces cluster partitions more

reflective of the underlying structure of noisy tertiary data than traditionally used clustering

methods.
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1. Introduction

Suppose there exists a set of grade-school students for whom performance in subjects like

Mathematics, Reading, and History is recorded as being “below”, “meeting,” or “exceeding”

the expectations set by a local school district. Suppose further that the interest is to determine

whether there exist groups of students such that students in the same group are similar to

each other, based only on placement of students into these three categories. In this paper

we introduce a method of creating such groups by combining a shrinkage-based statistical

estimator from categorical data analysis with cluster analysis. We show the combination of

the two methodologies results in more accurate groupings than standard clustering algorithms

under certain conditions.

Cluster analysis is a method of separating a set of images, patterns, or data objects into

homogeneous groups such that objects placed in the same group share some property that

makes them more similar to each other than they are to any other objects within different

groups. Pertinent to many clustering algorithms is a mathematically defined measure of

dissimilarity (or, alternatively, similarity). How this dissimilarity is defined depends on the

type of variables recorded on each observation.

When variables are completely quantitative, dissimilarity is usually based on a distance

measure, e.g., the Euclidean or Manhattan distance between observations, such that a smaller

distance between observations implies the observations are more similar, or other distance

metrics found in Everitt et al. (2011) or Friedman et al. (2017). On the other hand, when

variable measurements are completely qualitative, the notion of distance is not as natural, and

thus dissimilarity may be defined by looking at the proportion of attribute measurements upon

which objects disagree. Other methods of defining similarity and dissimilarity for qualitative

data can be found in Everitt et al. (2011) or Boriah et al. (2008). It is also possible for variable

types to be mixed, including both qualitative and quantitative variables in the same dataset,

2



in which clustering algorithms like K-Prototypes (Huang, 1997) may be used.

Let us consider the case where all variables are qualitative. The simplest case of this is when

each attribute measurement is binary, taking one of two outcomes. The clustering of binary

data has been studied and used extensively in recent years (see e.g., Cornell et al. (2009);

Dolnicar and Leisch (2004); and Hitchcock and Chen (2008)). In this paper, however, we

focus on tertiary data. We propose a dissimilarity-based method of creating clusters when the

attribute measurements are tertiary: qualitative with 3 classes. For example, a variable may

measure level of autism with the responses being “requiring support”, “requiring substantial

support”, or “requiring very substantial support.” Though clustering algorithms exist within

the field of cluster analysis for use on such data, many of the algorithms for qualitative

attribute measurements tend to neglect variability and noise, which may affect the accuracy

of clustering solutions produced.

Consider the aforementioned example of clustering a set of grade-school children based on

their performance in various subjects. Merely observing the category (say, “below expecta-

tions”) a student is in gives no indication how close the student was to meeting the standard.

Similarly, one has no idea how close a student who met the standard was to exceeding those

standards in the subject. Furthermore, when working with qualitative data, it is possible for

some information to be obscured within the categories, such as variability of the latent vari-

ables underlying the structure of the data. Situations of high latent variability may complicate

the clustering task. Therefore, we propose to use clustering methods that compensate for the

imperfections that may plague qualitative data, e.g., by the use of statistical smoothing.

Statistical smoothing is a technique used commonly to help find a signal or uncover the

true structure of the data that may be buried by noise. We propose smoothing via shrinkage,

which allows us to smooth the observed data towards a particular model, should such a model

be supported by the data. Our approach guards against misspecification errors that may occur

when assuming a particular model (see e.g., Agresti (2012) or Simonoff (1998)) and allows us to

supplement the information in a pair of observations with that of the entire data set (Hitchcock

and Chen, 2008). We propose a dissimilarity-based method for the clustering of tertiary
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Table 1: Cell probabilities for a pair of objects Yk and Yk′ .

Yk′

Yk 1 2 3

1 π11 π12 π13
2 π21 π22 π23
3 π31 π32 π33

The true probability objects Yk and Yk′ both have a particular variable outcome of category

1 is denoted as π11; the true probability object Yk has a variable outcome in category 1 while

object Yk′ has a variable outcome in category 3 is denoted as π13, and so forth.

observations that uses a shrinkage-based smoother to combat variability and underlying noise

that may exist in the data. The ideas presented are an extension of the work of Hitchcock

and Chen (2008), who showed that pre-smoothing dissimilarities helped improve partitioning

accuracy in the case of binary data that had a noisy underlying structure.

The outline of the paper is as follows: In Section 2, we provide some background informa-

tion relevant to our method, formally define pairwise dissimilarities for a set of tertiary data

objects, and introduce a clustering algorithm based on a smoothed version of the dissimilarity

matrix. Section 3 describes a simulation study illustrating the effect of the proposed method

of smoothing dissimilarities on the accuracy of cluster partitions. In Section 5, we apply the

proposed algorithm to the Pima Indian Diabetes dataset (National Institute of Diabetes and

Digestive and Kidney Diseases (1990)) to assess the method’s performance on a real data

application . We conclude the paper in Section 6 with a brief discussion of the methodology

and its possible ramifications.

2. Method

In this section we discuss in detail our proposed method of pre-smoothing tertiary dissimi-

larities as a preliminary step to clustering. When cross-classifying tertiary data objects, data

on each pair of observations can be summarized within a 3×3 contingency table as shown in Ta-

ble 1 where the entries within the table, {πkk′}, denote the true cell probabilities. Table 1 can

be thought of as probabilities of a multinomial random variable, X = (X1, X2, . . . , Xn), where

π = (π11, π12, π13, π21, π22, π23, π31, π32, π33) represents the true cell probabilities, with the con-
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ditions 0 ≤ πij ≤ 1, i = 1, 2, 3, j = 1, 2, 3 and
∑

i

∑
j πij = 1. Let π̂ij, i = 1, 2, 3, j = 1, 2, 3,

denote an estimate for the true cell probability πij. When the goal is to simultaneously

estimate multiple cell probabilities, (in the 3 × 3 case, we estimate 9, of which 8 are free

parameters), Fienberg and Holland (1973) presented a shrinkage estimator π∗, which we will

use to smooth our dissimilarity matrix, D.

In statistics, smoothing is used to detect the underlying signal or latent structure that may

be hidden by noisy data with a smoothed estimator in the multinomial setting in many cases

defined as shown in equation (1)

π∗
ij = (1− λ)π̂ij + λ(π̃ij). (1)

(see e.g., Albert (1987) or Hitchcock and Chen (2008)). In equation (1), π̂ij represents the ob-

served cell proportions, π̃ij represents the estimated cell probabilities under an assumed model,

and λ denotes the degree of smoothing. The π∗ used in this paper will be a “data-dependent”

smoothed estimator; Simonoff (1995) discussed other methods of smoothing categorical data

that could be used as alternatives to this approach. For small λ, more emphasis would be

placed on the observed cell probabilities π̂ij and for larger values, more emphasis places on

the model-based cell probability estimates π̃ij. Though π∗
ij is a biased estimator of πij, it may

be more robust than π̂ij under sparse multinomial tables, and it allows us to use information

from neighboring cells to garner better estimates for cell probabilities (see Simonoff (1995) or

Simonoff (1998)). This method of smoothing is closely related to Stein estimation (see Efron

and Morris (1977)).

2.1 Dissimilarities for a tertiary data set

Dissimilarities for tertiary data observations can be calculated as the proportion of mis-

matches among P tertiary attribute measurements for each pair of observations. Consider

Table 2 which depicts the cross-tabulation of two multivariate objects, Yk and Yk′ , from

which we define pairwise dissimilarity. In this table, each attribute has an outcome of 1, 2,
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Table 2: Summary of matches and mismatches for a pair of objects Yk and Yk′ .

Yk′

Yk 1 2 3 Totals

1 a b c a+ b+ c

2 d e f d+ e+ f

3 g h i g + h+ i

Totals a+ d+ g b+ e+ h c+ f + i P

In the table, a denotes the total number (among the P variables) of variables for which objects

Yk and Yk′ both have outcomes in category 1, b denotes the total number of variables upon

which object Yk has an outcome in category 1 and object Yk′ has an outcome in category 2,

and so forth.

or 3 denoting its membership. Letters a, e, and i represent the total number of variables for

which both objects have an outcome classified as 1, 2, and 3, respectively. The other letters

denote the number of attributes on which objects Yk and Yk′ have different values. For exam-

ple, b denotes the number of variables for which object Yk has a value of 1 and object Yk′ has

a value of 2; similarly, c denotes the number of variables for which object Yk has a value of 1

and Yk′ has a value of 3. Based on this 3× 3 table, we define similarity for the kth and k′th

object as Skk′ =
1
P
(a+ e+ i) and dissimilarity as Dkk′ = 1− Skk′ . This particular method of

defining dissimilarity is as an extension to the matching coefficient method often used in the

binary case or analogous to the overlap method used in computer science with matches and

mismatches weighted equally. Several alternatives to the matching coefficient method exists

(see, e.g., Everitt et al. (2011) or Boriah et al. (2008)); however, regardless of the choice of

definition, the smoothing procedure presented in Sections 2.2 and 2.3 still applies.

In several traditional methods of clustering, once the pairwise dissimilarities for each pair of

observations have been calculated, they serve as the input to a clustering algorithm of choice.

We propose, instead, pre-smoothing the dissimilarities before implementing the clustering

process.
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2.2 Choice for Model-Based Estimators

In this section we discuss possible choices for the model used to estimate π along with

rational underlying each model. In our notation, we use i and j to denote the ith row and

jth column of the 3× 3 table formed for a particular pair of objects k and k′. However, this

procedure would be repeated for each pair of objects.

Previously we discussed how counts in a 3×3 contingency table like Table 2 could be thought

of as data arising from a multinomial distribution. In this context, we view the problem from

the perspective of estimating the cell probabilities of the multinomial distribution. Let

π = (π11, π12, π13, π21, π22, π23, π31, π32, π33)

denote the set of true probabilities for each cell in the 3× 3 table shown in Table 1, and let

π̃ = (π̃11, π̃12, π̃13, π̃21, π̃22, π̃23, π̃31, π̃32, π̃33)

denote an estimate of the probabilities of observations falling in each cell of the 3 × 3 table

under the assumed model.

If the researcher has no prior information about the relationship between a pair of obser-

vations then a uniform or non-informative model may be used. In this case, one possibility is

an equal-probability model. Under this model, π̃ij = 1
9
, i = 1, 2, 3, j = 1, 2, 3. This suggests

observations are just as likely to fall into any cell in the 3×3 contingency table. If, instead, the

researcher has the belief that a pair of observations are independent in their tertiary variable

measurements, then an independence model may be appropriate. In this setting, the rows and

columns of Table 1 are independent; therefore, π̃ij = π̂i+π̂+j, i = 1, 2, 3, j = 1, 2, 3. Lastly, if

the researcher feels that a pair of observations are more likely to match in a particular category

and less likely to match on another, then a model of dependence could be chosen to reflect

those prior beliefs. For example, π̃ij =


1
10
, for i = j

1
60

for i ̸= j
would mean the pair of observations

are more likely to have the same tertiary attribute value for a particular attribute than to
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have any other combination of category values.

This method of choosing a model is similar to the Bayesian framework of choosing a prior

distribution that reflects the researchers’ prior belief about the structure of the data. Just

as it is important to choose an appropriate prior in Bayesian inference, it is also important

to choose a smoothing model carefully, being mindful that an appropriate model should be

supported by the data. Once the appropriate smoothing model is chosen, then shrinkage-based

smoothing is implemented.

2.3 Shrinkage-type smoother for the 3× 3 table

We now discuss our proposed method of smoothing the dissimilarity matrix using the

Fienberg-Holland (1973) estimator in the notation of Hitchcock and Chen (2008). We begin

with a discussion of the estimator and then show how each of the cells in the 3 × 3 table of

pairwise dissimilarities can be smoothed.

2.3.1. Fienberg-Holland Estimator

The Fienberg-Holland estimator (Fienberg and Holland, 1973) has been shown to be a

better estimator of π than the multivariate sample mean π̂ in terms of minimizing the total

mean squared error loss, and can be used to reflect prior information about the latent structure

of the data. This is significant because when we perform clustering using the original observed

dissimilarities, this is akin to using the cell proportions in π̂ to estimate the cell probabilities

while neglecting knowledge about the latent structure of the data.

Consider placing a Dirichlet prior with mean vector γ on π. The posterior mean associated

with the {i, j} cell probability is given by

(1− λ)π̂ij + λ(γij) (2)

with

λ =
κ

P + κ
,
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where P denotes the number of attributes recorded on each observation. Fienberg and Holland

(1973) denote the value that minimizes the expected squared error loss between π and the

estimate given in equation (2) by κ. Thus,

κ =
1−

∑
π2
ij∑

(γij − πij)2
.

Then a pseudo-Bayes estimator can be written as shown in equation (3)

P

P + κ
(π̂ij) +

κ

P + κ
(γij). (3)

Model-based estimates of π can be used as is traditionally done in an empirical Bayesian

approach (see Fienberg and Holland (1973)). Lastly, π and κ must also be estimated as their

true values are not known. Therefore, their maximum likelihood estimators are used, and

equation (3) can be rewritten with

κ̂ =
1−

∑
π̂2
ij∑

(π̃ij − π̂ij)2
.

In the case of tertiary data, the Fienberg-Holland estimate of κ can be written specifically as

κ̂ =
1− (π̂2

11 + π̂2
12 + · · ·+ π̂2

33)

(π̃11 − π̂11)2 + (π̃12 − π̂12)2 + · · ·+ (π̃33 − π̂33)2
.

Therefore, the Fienberg-Holland estimate for πij is given by

π∗
ij =

P

P + κ̂
(π̂ij) +

κ̂

P + κ̂
(π̃ij). (4)

Equation (4) can be used to smooth each of the cells of the table for a particular pair of

observations.

2.3.2. Smoothing the 3× 3 table

To smooth the 3× 3 table, we multiply the James-Stein-type estimators shown in equation

(4) by P , as shown in Equation (5):
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{i, j}(smooth) = π̃∗
ijP = [

P

P + κ̂
(π̂ij) +

κ̂

P + κ̂
(π̃ij)]P. (5)

The multiplication by P rescales the estimate to reflect the expected number of attribute

outcomes falling in each cell. We use these to obtain our inputs for the smoothed dissimilarity

matrix.

For cell {i, j}, i = 1, 2, 3, j = 1, 2, 3, we use equation (5) to obtain smoothed cell counts

that correspond to each cell location as shown in Table 1. Then

Ssmooth
kk′ =

1

P
(asmooth + esmooth + ismooth)

Dsmooth
kk′ = 1− Ssmooth

kk′

Once these smoothed dissimilarities are formed for each pair of observations,they are collected

into a n×n smoothed dissimilarity matrix, Dsmooth, that is used as the input for the clustering

algorithm of choice.

2.4 Clustering algorithms used

To investigate the situations in which smoothing via shrinkage may be useful for cluster

analysis, we examine two different algorithms: Average Linkage and K-Medoids.

The Average Linkage algorithm (Sokal and Michener, 1958) is an agglomerative hierarchical

method of clustering that merges observations based on the average pairwise dissimilarity or

distance between cluster members. Since the output of hierarchical clustering can be shown

with a dendrogram that can be cut to obtain the desired number of clusters, using such an

algorithm eliminates the need to know the number of clusters a priori (see e.g., Friedman et al.

(2017) or Albalate and Minker (2011)).

The K-Medoids algorithm (Kaufman and Rousseeuw, 1987) is a partitioning-based method

of clustering, which partitions observations into groups based on the distance to a central,

”most representative,” cluster member (see Kaufman and Rousseeuw (1987)). This algorithm
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Table 3: Cross-Tabulation of Two Partitions

Partition One
Partition Two Same Group Different Group

Same Group A B

Different Group C D

does not require Euclidean distance to be used as the dissimilarity measure, and has been

shown to be a more robust method of clustering than K-Means clustering (see e.g., Friedman

et al. (2017) or Albalate and Minker (2011)).

Each algorithm is implemented using R (R Core Team, 2019). The Average Linkage algo-

rithm is implemented using the hclust function in the stats package, while the K-Medoids

algorithm is implemented using the pam (Kaufman and Rousseeuw, 1987) function in the

cluster package.

3. Simulations

In this section we discuss a simulation study undertaken to assess the performance of

the proposed method of pre-smoothing tertiary dissimilarities using the Fienberg-Holland

estimator. We assess the method’s effect on the accuracy of clustering partitions produced,

when using the Average Linkage and K-Medoids algorithms. Our simulations assume the data

has arisen from a mixture of multinomial distributions. We measure this “accuracy” of the

clustering solution in terms of the Adjusted Rand Index (ARI) as proposed by Hubert and

Arabie (1985).

3.1 Adjusted Rand Index

Consider Table 3 (see, e.g., McNicholas (2017) for this type of table) which shows the

cross-tabulation of the results of two different clustering methods. In this table, the columns

refer to the partition created from one method and the rows denote the partition created

by another method. Here, A denotes the number of pairs of objects that both partitioning

methods put in the same groups; B the number of pairs of objects put in the same group by

11



the first method but placed in different groups by the second method; C the number of pairs

of objects put in the same group by the second method but in different groups by the first

method; and D the number of pairs of objects that both partitioning methods put in different

groups. These values, then, can be used to assess cluster partition accuracy when one of the

partitions is assumed to represent the ground-truth partition.

Using the notation of McNicholas (2017), the ARI can be computed as

ARI =
N(A+D)− [(A+B)(A+ C) + (C +D)(B +D)]

N2 − [(A+B)(A+ C) + (C +D)(B +D)]

where N denotes the total number of possible pairs of objects.

The ARI is a correction to the Rand Index (Rand, 1971) and can take values as large as

1, with higher values denoting more agreement between two clustering solutions and values

closer to 0 denoting chance agreement. For our simulation study, one of the partitions will

denote the true clustering structure and the other, the proposed clustering partition produced

by a clustering algorithm. A method which results in higher ARI values is then considered

to be more reflective of the true latent structure of the data and hence a better method of

clustering the observations in the context of our simulation study.

3.2 Simulation setup

In this section we discuss simulated data generation and conclude with a discussion of the

clustering scenarios and separation settings used to assess cluster goodness.

3.2.1. Data generation

In this simulation, we assume there are n data objects, each with P tertiary features

recorded on them, that have arisen from C clusters. We further assume that each of these

P measurements is independent of the other P − 1 measurements (mutually independent).

In this case, the tertiary observation, Ylkp, refers to the specific categorical outcome of the

kth object in cluster l on feature p where l = 1, 2, . . . , C, k = 1, 2, . . . , nl,
∑C

l=1 nl = n, p =
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Table 4: Parameter Settings for Multinomial Simulations

Separation Setting
Vector I II III IV V

τ1 (0.40,0.30,0.30) (0.50,0.25,0.25) (0.60,0.20,0.20) (0.70,0.15,0.15) (0.80,0.10,0.10)

τ2 (0.30,0.40,0.30) (0.25,0.50,0.25) (0.20,0.60,0.20) (0.15,0.70,0.15) (0.10,0.80,0.10)

τ3 (0.30,0.30,0.40) (0.25,0.25,0.50) (0.20,0.20,0.60) (0.15,0.15,0.70) (0.10,0.10,0.80)

Note: Row 1 defines the parameter vectors used to generate the features for objects from cluster

1 in each separation setting, row two defines the parameter vectors used to generate the features

for objects from cluster 2 in each separation setting, and row 3 gives the parameter vectors to

generate the features for objects from cluster 3 in each separation setting.

1, 2, . . . , P . Thus Ylkp ∈ {1, 2, 3}. Lastly, the probability of an attribute measurement being in

either category remains constant for each of the P measurements. Therefore, in this setting,

Ylk ∼ Multi(P, τl) with τl = (al, bl, cl), 0 ≤ al ≤ 1, 0 ≤ bl ≤ 1, 0 ≤ cl ≤ 1. τl denotes the

parameter vector for the lth cluster, and al, bl, and cl refer to the probability of obtaining an

attribute measurement that falls in category 1, 2, or 3, respectively, for data objects in the

lth cluster.

3.2.2. Parameter settings

For the simulations, we generate 5000 data sets each with a total of n = 600 objects each

with P = 10 tertiary features. We assume these objects have arisen from C = 3 clusters

with a varying number of observations from each cluster (n1 = 100, n2 = 200, n3 = 300).

We generate the kth tertiary object in cluster 1, 2, and 3, respectively, as follows: Y1k ∼

Multi(10, τ1), Y2k ∼ Multi(10, τ2), and Y3k ∼ Multi(10, τ3). (Note we utilize the sample

function in base R (R Core Team, 2019) to generate each sample.) The value of τ1, τ2, and τ3

are specified as shown in Table 4.

The cluster separation settings denoted I, II, III, IV, and V, represent the distance between

clusters. As we increase the settings, the discrepancy between clusters increases. Therefore,

Setting I denotes the smallest distance between clusters and setting V denotes the largest.

Table 4 shows the parameter vector τl used for clusters l = 1, 2, 3 for each separation setting in

our simulations. To better understand these settings, consider separation setting V. Under this
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last setting, observing an object with several attributes with measures of “1” would suggest

it is more likely that that particular object arose from sub-population 1 as opposed to either

of the other two sub-populations. On the other hand, if this same outcome was observed in

cluster separation setting I, it would be tougher to determine from which cluster it had arisen.

Thus, the overlap between clusters decreases, in general, as the separation settings increase.

This suggests the clustering problem gets easier as we increase from setting I to V.

After generating the tertiary data objects, each object is stored in a n× P data matrix as

shown below where object m’s measurements are stored in row m.

Y =



Y11 Y12 . . . Y1P

...
...

...
...

Ym1 Ym2 . . . YmP

...
...

...
...

Yn1 Yn2 . . . YnP

.


Once the tertiary objects are created, we perform clustering using the Average Linkage and

K-Medoids algorithms with the observed dissimilarities and the dissimilarities smoothed under

three smoothing models: independence, equal probability, and high probability of match. For

the independence model, we set our smoothed cell estimates to π̃ij = π̂i+π̂+j, i = 1, 2, 3, j =

1, 2, 3. For the equal-probability model, we set π̃ij = 1
9
, i = 1, 2, 3, j = 1, 2, 3. Finally, for

the high probability of match model, we set π̃ij =


1
10
, for i = j

1
60

for i ̸= j
. We then compare the

outcomes of each method using the average ARI and show the results in Section 3.2.3.

3.2.3. Results

In this simulation, the Average Linkage algorithm produced the most accurate clustering

partitions. This suggests that a hierarchical method of clustering may be a better method to

use in this setting rather than a partitioning-based method like K-Medoids. Furthermore, in

most cases smoothing under the assumption of independence produced more accurate clus-
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Table 5: Table gives average ARI for the Average Linkage clustering of the simulated data,
based on different smoothing methods. There are 100 observations from cluster one, 200
from cluster two, and 300 from cluster three.

Average Linkage Algorithm
I II III IV V

0.541 (o) 0.579 (o) 0.985 (o) 0.990 (o) 0.997 (o)

0.551 (s/i) 0.877 (s/i) 0.987 (s/i) 0.990 (s/i) 0.997 (s/i)

0.011 (s/E) 0.084 (s/E) 0.551 (s/E) 0.868 (s/E) 0.980 (s/E)

0.014 (s/H) 0.235 (s/H) 0.601 (s/H) 0.872 (s/H) 0.979 (s/H)

NOTE: Each value is the average (across 5000 data sets) ARI for the clustering produced from

an Average Linkage algorithm based on (top within each cell) the observed dissimilarities (o);

(second within cell) the smoothed dissimilarities based on the independence model (s/i); (third

within cell) the smoothed dissimilarities based on the equal-probability model (s/E); (last within

cell) the smoothed dissimilarities based on the high probability of match model (s/H).

tering solutions, as measured by the average ARI, compared to not smoothing, and always

performed better than any other smoothing method considered. This suggests clustering via

smoothing with an independence assumption may be the better method to use when clustering

tertiary data arising from a multinomial setting.

Table 5 shows the specific accuracies obtained when the clustering solutions were produced

using the Average Linkage algorithm. Since the average ARI values in Table 5 are averages

of 5000 shift-adjusted proportions, we can say the Monte Carlo standard error associated

with each entry in Table 5 is, at most, approximately 0.007. (The same upper bound on

the Monte Carlo standard error can be stated for Table 6, which also contains averages of

5000 ARI values). In the Average Linkage case, the accuracy of the clustering solutions

produced using the unsmoothed dissimilarities and for those resulting from pre-smoothing the

dissimilarities under a model of independence are highest of all the smoothing methods in

each separation setting. In the case of more variability in the latent structure of the data,

separation settings I-III, the average ARI values produced utilizing the dissimilarities pre-

smoothed under independence are notably higher than those obtained through the use of the

unsmoothed dissimilarities. In separation settings IV and V, the accuracy of both methods is

the same.

The opposite, however, is true when the dissimilarities are pre-smoothed towards a model
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Figure 1: Average ARI value assuming 100 observations from cluster one, 200 from cluster
two, and 300 from cluster three. The left plot corresponds to the Average Linkage clustering
results and the right corresponds to the K-medoids clustering results.

of equal probability or high probability of match. Under these two assumptions the resulting

clustering accuracy is substantially lower than those obtained from the use of the unsmoothed

dissimilarities. This suggests it is of importance to choose a smoothing model that is supported

by the structure of the data, especially when using the Average Linkage algorithm. The results

can be seen visually in the left plot of Figure 1.

In Table 6, the resulting clustering accuracies are shown when observations are clustered

using the K-Medoids algorithm. In this case, the most accurate solutions are still obtained

when using the pre-smoothed dissimilarities under a model of independence versus any other

method; however, the improvement seen in separation settings I-III are much more noticeable

than in Table 5. We also see that while most of the average ARI values see a decline from the

aforementioned table, those obtained by pre-smoothing under a model of equal probability

see an increase. In separation settings I-III, the accuracy obtained under the assumption of

equal probability, too, outperforms that from the use of the unsmoothed dissimilarities. This

suggests the K-Medoids algorithm may be more robust to smoothing choice. In the final

settings, separation settings IV and V, the accuracy of each method is the same. This is to

be expected as the clustering problem is easiest in these two cases.
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Table 6: Table gives average ARI for the K-Medoids clustering of the simulated data, based
on different smoothing methods. There are 100 observations from cluster one, 200 from
cluster two, and 300 from cluster three.

K-Medoids Algorithm
I II III IV V

0.010 (o) 0.147 (o) 0.649 (o) 0.902 (o) 0.986 (o)

0.060 (s/i) 0.355 (s/i) 0.689 (s/i) 0.903 (s/i) 0.986 (s/i)

0.036 (s/E) 0.299 (s/E) 0.671 (s/E) 0.902 (s/E) 0.986 (s/E)

0.002 (s/H) 0.009 (s/H) 0.582 (s/H) 0.902 (s/H) 0.986 (s/H)

NOTE: Each value is the average (across 5000 data sets) ARI for the clustering produced from

the K-Medoids algorithm based on (top within each cell) the observed dissimilarities (o); (second

within cell) the smoothed dissimilarities based on the independence model (s/i); (third within

cell) the smoothed dissimilarities based on the equal-probability model (s/E); (last within cell)

the smoothed dissimilarities based on the high probability of match model (s/H).

Overall the simulation results suggest that if smoothing will be performed, it is better to

smooth the dissimilarities towards a model of independence when the tertiary data is believed

to have arisen from a multinomial setting. In each setting explored, the accuracy obtained

from using the pre-smoothed dissimilarities based on an independence model were as high

or higher than that resulting from the observed dissimilarities. This finding agrees with

Hitchcock and Chen (2008), who found pre-smoothing may not be necessary in cases of larger

separation between clusters but may result in better performance with smaller separation

between clusters. The results also suggest that the Average Linkage algorithm may be the

better algorithm to use under such settings in general as the accuracy obtained from this

algorithm is typically higher than what is seen with K-Medoids. Thus smoothing (while helpful

when using the Average Linkage algorithm) may be even more beneficial if a practitioner will

be using the K-Medoids algorithm. A practitioner should also be mindful of the limitations

of this simulation study. It only considers the framework in which the data has arisen from

a discrete underlying process. Results may be different had a continuous process been used

to generate the data. In the data application of Section 4 we consider the framework in

which tertiary objects arise from the discretization of a mixture of discrete and continuous

processes. This should not be seen as problematic as Simonoff (1998) discusses smoothing is

more natural in cases such as those where categorical outcomes are ordinal or have resulted
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from the discretization of a continuous process.

4. An application to Diabetes

We here apply the pre-smoothing method proposed in Section 2 of this paper to the Pima

Indian Diabetes data (National Institute of Diabetes and Digestive and Kidney Diseases,

1990), obtained from the UCI Repository for Machine Learning (Dua and Graff, 2020). The

original dataset consists of n = 768 Pima women with recordings for P = 9 variables: Number

of pregnancies (Preg), plasma glucose (Glucose), blood pressure (BP), tricep skinfold thickness

(Tricep), serum insulin level (Insulin), body mass index (BMI), diabetes pedigree function

(Ped), age (Age), and diabetes status at the time of the study. We omit the diabetes status

variable from the cluster analysis, as we are treating this as an unsupervised problem. We will

use this variable, instead, as a type of standard against which to compare our clustering results.

Note that this may not be a perfect gold standard as a representation of the “true” clustering

structure, but it does provide some sort of standard partition to which we can compare our

clustering results. We consider the existence of C = 2, 3, or 4 clusters in the dataset and

choose the value of C that results in the highest average silhouette width (Rousseeuw, 1987)

to identify the best number of clusters. Once the optimum C has been identified, clustering

results obtained using the Average Linkage and K-Medoids algorithm will be discussed. These

results will be shown in Section 4.2.

4.1 Data preprocessing and variable transformations

The original Pima Indian Diabetes dataset included several observations of 0 for variable

measurements, such as plasma glucose level, where such a value is nonsensical. Therefore,

such observations were removed from the dataset. The final dataset used in this section thus

consists of n = 391 observations with P = 8 variables.

Since the 8 variables recorded for each subject are either discrete or continuous variables,

at the next stage of preprocessing, each variable was converted to a tertiary variable. Mea-
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surement values of each variable that fall in the first category are denoted as 0. Measurement

values of each variable that fall in the second category are denoted as 1. Measurement values

for each variable that fall in the last category are denoted as 2.

The variables Preg, Tricep, and Age were transformed into the categories given based on

careful examination of each variables’ distribution. The remaining variables were transformed

into their respective categories based on practical cutoffs described in readily available liter-

ature. For example, research suggests a glucose tolerance test outcome below 140 mg/dL is

normal, while a measure between 140 mg/dL and 199 mg/dL is considered pre-diabetic, and a

level above 199 mg/dL is considered diabetic (Mayo Clinic, 2019). The remaining 4 variables

were treated similarly.

4.2 Results

The average silhouette widths were highest when C = 2. Therefore, the results presented

in this section assume there are two subpopulations in the Pima Indian Diabetes Dataset.

Figure 2 shows the Average Linkage clustering of the subjects using the unsmoothed dissim-

ilarities and the three proposed models for pre-smoothing. Note, cluster 1 when using either

the unsmoothed dissimilarities or the dissimilarities pre-smoothed towards an independence

model seemingly corresponds to cluster 2 when using the equal probability or high probability

of match model. (Since the numerical labeling of the clusters in the output is arbitrary, it is

irrelevant whether a cluster is labeled 1 or 2. What matters is how the individuals are parti-

tioned into the two clusters). In this figure, the dissimilarities pre-smoothed towards a model

of equal probability or high probability of match appear to result in a clustering structure

with more inter-cluster separation and less overlap than that obtained using the unsmoothed

dissimilarities or those pre-smoothed towards an independence model.

In Figure 3, the clustering results produced through the use of the K-Medoids algorithm are

shown. Here, the use of any of the options for the dissimilarities (except those pre-smoothed

towards a high probability of match model) results in a similar amount of overlap between

19



Figure 2: The plots above show the clustering of the Pima Indian subjects produced using
the unsmoothed dissimilarities (top-left), equal probability pre-smoothed dissimilarities (top-
right), independence pre-smoothed dissimiliarities (bottom-left), and high probability of match
pre-smoothed dissimilarities (bottom-right) within the Average Linkage clustering algorithm.

each cluster. To assess the clustering solutions objectively the ARI is used.

Table 7 shows the classification accuracy of each algorithm resulting from the use of

smoothed and non-smoothed dissimilarities. The highest accuracy, as indicated by a higher

ARI, is denoted in bold for each algorithm. The table suggests the clustering accuracy is

highest when the dissimilarities are pre-smoothed. This comes through the use of the equal

probability model when using the Average Linkage algorithm and the independence model

when using the K-Medoids algorithm. Furthermore, in both cases, the highest ARI is no-

Table 7: ARI values obtained from the clustering of 391 Pima Indian Women using K-
medoids and Average Linkage Algorithms using the unsmoothed dissimilarities and three
different smoothing methods.

Cluster Goodness

Smoothing Method Average Linkage K-medoids

Unsmoothed 0.637 0.640

Equal Probability 0.725 0.703

Independence 0.637 0.736

High Probability of Match 0.688 0.638
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Figure 3: The plots above show the clustering of the Pima Indian subjects produced using
the unsmoothed dissimilarities (top-left), equal probability pre-smoothed dissimilarities (top-
right), independence pre-smoothed dissimiliarities (bottom-left), and high probability of match
pre-smoothed dissimilarities (bottom-right) within the K-Medoids clustering algorithm.

ticeably higher than that for the clustering resulting through the use of the unsmoothed

dissimilarities. This suggests clustering the pre-smoothed dissimilarities (via equal probabil-

ity or independence) may better reflect the true underlying structure of the data than does

the clustering of the unsmoothed dissimilarities.

To further examine the actual differences between the clustering results, Tables 8 and 9 are

provided. The ARI was highest for pre-smoothing the dissimilarities towards an equal prob-

ability model for the Average Linkage algorithm, thus Table 8 compares the cross-tabulation

of the partition resulting from the use of the unsmoothed dissimilarities and that produced

by this smoothing model. There are 19 subjects who tested negative for diabetes that are

placed in different clusters between the smoothing and non-smoothing methods (about 5% of

the observations). Similarly, there are 30 subjects who tested positive for diabetes that are

placed in different clusters between the smoothing and non-smoothing method (about 8% of

the observations).

For the K-Medoids algorithm, cluster accuracy was highest when the dissimilarities were
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Table 8: Cross-tabulation of the segmentation of subjects using the unsmoothed dissimilar-
ities and dissimilarities smoothed under equal probability in the Average Linkage algorithm
compared to the actual diabetic test results.

Unsmoothed Equal Probability
Test Result Cluster 1 Cluster 2 Cluster 2 Cluster 1

Positive 64 66 94 36

Negative 96 165 77 184

Table 9: Cross-tabulation of the segmentation of subjects using the unsmoothed dissimilari-
ties and dissimilarities smoothed under independence in the K-medoids algorithm compared
to the actual diabetic test results.

Unsmoothed Independence
Test Result Cluster 1 Cluster 2 Cluster 1 Cluster 2

Negative 218 43 187 74

Positive 60 70 34 96

smoothed towards a model of independence. Consequently, Table 9 shows the cross-tabulation

of the actual diabetes test results for each subject compared to the clustering results produced

by the use of the unsmoothed dissimilarities and the dissimilarities smoothed under a model

of independence within the K-Medoids algorithm. The two methods account for a difference

of 31 and 26 subjects who tested negative and positive, respectively—a difference in clustering

output for about 15% of the subjects.

5. Discussion

In this paper we proposed a dissimilarity-based method for the clustering of tertiary ob-

servations. The proposed method utilizes statistical smoothing to help recover the true latent

structure from which observations have arisen.

The results from the simulation study suggest when the tertiary observations have arisen

from a multinomial setting, more accurate clusters are formed in most cases by using pre-

smoothed dissimilarities. Within the Average Linkage algorithm, it appears to be best to pre-

smooth the dissimilarities towards a model of independence. With the K-Medoids algorithm,

the benefit of smoothing toward independence is apparent, and the equal-probability model

also appears to be effective. The main findings suggest pre-smoothing is most influential, in
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this setting, when there is more overlap between clusters. In the cases when there is much more

distance between cluster centers, the accuracy obtained using the pre-smoothed dissimilarities

is comparable to using the observed dissimilarities. This may suggest that pre-smoothing may

be a good idea to implement regardless of the believed distance between the cluster centers

or within-cluster variability in many cases, if a good smoothing model that is supported by

the data can be applied.

In our diabetes application, results suggest the obtained cluster partitions more accurately

reflected the underlying structure of the data and were more comparable to the blood diabetes

test results when the pre-smoothed dissimilarities were used rather than when the traditional

(non-smoothed) dissimilarities are used.

Overall, the hypothesis that pre-smoothing the observed dissimilarities may result in the

formation of clusters that more accurately reflect the true underlying structure seems to be

supported in many cases. A natural next step would be to explore other methods of smooth-

ing and methods to generalize to the case of an arbitrary number of categories. Such future

approaches might consist of putting a Bayesian prior on the smoothing parameter or even ex-

ploring other estimators of π that could be used in place of the Fienberg-Holland estimator.

It is also worth noting that the increase in accuracy resulting from pre-smoothing the dissimi-

larities within the K-Medoids algorithm suggests pre-smoothing may be more influential when

using partitioning-based methods of clustering rather than a hierarchical algorithm. This is

promising as it has been noted in many papers that such partitioning-based methods tend

to be more computationally efficient than hierarchical clustering methods (see, e.g., Huang

(2008)). Consequently, a generalized method could have the ability to impact a variety of

fields and applications. Such tasks may include those of clustering large datasets based on the

Likert scale or text, the clustering of microarray data in genomics, or clustering images and

documents in information retrieval.
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