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Abstract

Cluster analysis attempts to group data objects into homogeneous
clusters on the basis of the pairwise dissimilarities among the ob-
jects. When the data contain noise, we might consider performing
a smoothing operation, either on the data themselves or on the dis-
similarities, before implementing the clustering algorithm. Possible
benefits to such pre-smoothing are discussed in the context of binary
data. We suggest a method for cluster analysis of binary data based on

“smoothed” dissimilarities. The smoothing method presented borrows
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ideas from shrinkage estimation of cell probabilities. Some simulation
results are given showing that improvement in the accuracy of the
clustering result is obtained via smoothing, especially in the case in
which the observed data contain substantial noise. The method is il-
lustrated with an example involving binary test item response data.
KEY WORDS: Cluster analysis; Contingency table; Matching coeffi-
cient; Shrinkage; Stein estimation; ACT.

1 Introduction

Cluster analysis is the statistical technique of separating objects, or observa-
tions, into homogeneous groups on the basis of (typically multivariate) data
for several variables. We often picture the variables as continuous, but there
is a substantial literature about clustering objects based on binary data (e.g.,
Everitt, Landau and Leese, 2001; Kaufman and Rousseeuw, 1990).

When the data contain some type of noise (whether measurement error or
merely unexplained variability), it is intuitive that smoothing the data, when
done properly, may better recapture the underlying process generating the
data. Often individual data values contain substantial noise and thus are less
trustworthy to reflect the process we hope to understand. Smoothing meth-
ods attempt to reduce this noise by balancing the information in individual
data points with information in the data set as a whole, or by shrinking data
values toward some assumed structural model. Cluster analysis itself may
be viewed as a type of smoothing, in the sense of being a technique to ob-
tain a less complex structure from noisy data. However, standard clustering
methods can be sensitive to outliers that could exist when we directly cluster
observed data. Therefore clustering a smoothed version of the data may be
preferable to clustering the observed (unsmoothed) data.

In certain situations the idea of smoothing is natural. For example, Hitch-



cock, Booth and Casella (2007) showed that a shrinkage method of smoothing
could aid in the clustering of functional data (data arising as curves). With
binary data, the idea of “smoothing” seems less natural than with functional
data, but the concept of shrinkage will be an important one in the methods
discussed here.

A common method for clustering binary data objects is to define pairwise
dissimilarities among the objects, each of which is typically a function of the
number of matches (or mismatches) among the p binary variables measured
on the pair of objects. A “match” occurs when, for a certain variable, both
objects share the same value (both 0 or both 1). For any pair of objects a
2 x 2 table of matches and mismatches may be constructed. Our smoothing
method will fundamentally use this table.

In Section 2 we will formally define the dissimilarities for a set of binary
data and introduce a clustering method based on a smoothed version of
this collection of dissimilarities. Section 3 describes a simulation study to
determine the effect of this smoothing method on the accuracy of the cluster
analysis. In Section 4, we apply the method to a real data set involving test

item responses, and Section 5 is a conclusion.

2 Method

In this section we present a method of clustering binary data objects based
on dissimilarities that are “smoothed” via a shrinkage technique. As a mo-
tivation for this approach, consider the following hypothetical example. A
class of schoolchildren are given a series of tests, each of which entails per-
forming some physical task (e.g., doing a pull-up, jumping over a bar, etc.).
The data point observed on each child for each task is binary (0/1) according
to whether the task was successfully completed. The goal is to group the set

of children into clusters based on the set of binary data. Note such binary



Y. 0 1 Totals
0 a b a+b
1 c d c+d

Totals |a+c|b+d | P=a+b+c+d

Table 1: Table listing number of matches and mismatches for a pair of objects
Y; and Yg. The number (among the P variables) of variables for which
Y, = Yy = 0is a; the number of variables for which Y; =0 and Yy =1 is
b; the number of variables for which Y, =1 and Y = 0 is ¢; the number of

variables for which Y, =Y, =1is d.

observations are imperfect: They do not account for how close a child came
to accomplishing the task, nor the ease with which it was accomplished. A
child’s binary score on a task may not measure his or her underlying ability
on that task; using the observed binary data may lead to deceptive results
if there is enough “noise” in the measurements. We suggest that a smooth-
ing procedure may yield dissimilarities that are better inputs to a clustering

algorithm in many cases.

2.1 Dissimilarities for a Binary Data Set

For any two objects (represented by the binary data vectors Yy, Yy ), con-
sider the 2 x 2 table of matches and mismatches shown in Table 1.

A variety of measures of similarity or of distance between a pair of objects
may be calculated from the elements of this 2 x 2 table; see Finch (2005) for
a discussion of several such metrics. A very common measure of similarity

between the two objects is the simple matching coefficient

Skk! = (a—l—d)/P,



where a + d is the number of variables on which the two objects match and
P is the total number of binary variables (Sokal and Michener, 1958). Then

the corresponding dissimilarity measure is
dkklzl—skklz(b+0)/P. (1)

This choice of dissimilarity measure implicitly assumes that, for any pair
of objects, matches on 0 and matches on 1 are equally informative in the
cluster analysis. In some analyses, this is not the case, and the similarity
coefficient may weight a and d unequally (Johnson and Wichern, 2002). For
this study, we will focus on the simple measure that weights both types
of matches equally. According to Hands and Everitt (1987), this simple
matching coefficient is the choice most often used in practice to cluster binary
data.

Once a n x n dissimilarity matrix D containing all pairwise dissimilari-
ties is constructed, standard clustering methods (such as hierarchical linkage
methods or partitioning methods such as K-means) can be used to group the
objects. Note that in the clustering process, these pairwise dissimilarities
play an analogous role to distance measures (such as Euclidean distance)
that are commonly employed in cluster analysis with continuous data.

While the standard approach uses the observed dissimilarities, we propose
to use “smoothed” dissimilarities: in particular, dissimilarities based on a
smoothed version of the 2 x 2 table. Since the underlying data process
contains random noise, we assume that this smoothing will reduce the noise
and produce dissimilarities more reflective of the true discrepancies among
the signal components of the various objects.

The problem of smoothing entries in a 2 x 2 table is quite well studied,
in the very different context of categorical data analysis. A widely used ap-
proach in estimating the cell probabilities for a two-way contingency table is

to shrink the observed cell proportions toward some model-based probabil-



ity estimate. We will borrow this approach in our dissimilarity estimation

problem.

2.2 Possible Choices for the Model-based Estimators

For any particular pair of binary objects, let = (71, 712, 721, To2)  denote
the set of true probabilities of a value falling in the respective cell in the
2 x 2 table in Table 1. (For example, in the cluster analysis setting, m;
represents the probability that the pair of objects both have a value of zero
for a particular variable.) Then let & = (#1q, 719, 721, T22) be a set of cell-
probability estimates based on some model.

We now suggest possible models to obtain the {7;;} values. If the in-
vestigator has no prior knowledge whatsoever about the clustering structure
among the binary objects, a logical choice is some type of default or nonin-
formative model. For example, a simple default model might assign equal
probabilities to a value falling in each of the four cells such that 7;; = 0.25,
1=1,2; 7 =1,2. A model assuming independence between rows and columns
might assign 7;; = 7;1 74, 1 = 1,2, 7 = 1,2, where a + indicates summation
over the subscript’s set of values. For example, #;1 = >, #;;, where the {#;;}
represent the observed cell proportions.

On the other hand, a model of dependence might assume two objects are,
say, four times as likely to “match” on a binary variable than to have a mis-
match, in which case we would assign 7 = (711, 12, Ta1, 7?22)' =(0.4,0.1,0.1, 0.4)'.

Furthermore, if we have some prior knowledge of the clustering structure
of the objects, we could vary the sets of {7;;} values across object pairs.
For example, for a pair of objects strongly suspected to belong to the same
cluster, we could assign & = (0.45,0.05, 0.05, 0.45)'; for a pair of objects sus-
pected to belong to different clusters, we could assign & = (0.2,0.3,0.3,0.2) .

In the next section we present a shrinkage method that yields a “smoothed”

result that is robust with respect to a possibly misguided choice of model-
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based estimates.

2.3 A Shrinkage-type Smoother for the 2 x 2 Table

A general form of shrinkage estimator 7;; of each cell probability is written
as (see, e.g., Albert, 1987) a weighted average of the observed cell proportion

7;; and some model-based estimate 7;;:
iy = (1= Aty + Aftij. (2)

Here, ) represents a smoothing parameter that often depends on the sample
cell counts. Among the first to derive such an estimator were Fienberg and
Holland (1973), who showed that by placing a Dirichlet prior (having means
{7i;}) on the set of cell probabilities, a Bayes estimator resembling (2) could

be derived:
P K

A

Pt+rt P+n7]

They showed that choosing

1-— ZW?J
> (i — mij)?

minimized a total mean squared error criterion, and used the sample pro-

K =

portions {7;;} to estimate the unknown {;;}. Since one must choose the
prior parameters {7;;}, a natural (empirical Bayesian) approach suggested
by Fienberg and Holland is to use some model-based estimates {7;;}. The

resulting estimators of {7;;} have the form of (2) with

K

A=

p

K

+

with
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When applying this techique in smoothing the dissimilarities, we will

k=

focus on the Fienberg-Holland approach, which provides an objective choice



of the smoothing parameter, but we note that x (and thus \) could be chosen

subjectively. In a 2 x 2 table, the Fienberg-Holland estimate of & is

[1 = (7} + fy + 751 + 73,)]
(711 — 711)% + (12 — T12)2 + (21 — 721)2 + (Froa — 7a2)?

k=

(3)

Recall that the observed cell count for cell (7, j) (yielding the “observed”
dissimilarities) is simply 7;; P; recall P is the total number of binary variables
(equivalently, the sum of the cell counts). Therefore a set of “smoothed” cell

counts may be obtained by replacing 7;; by ;. Thus

P K
smooth — 1P = ~ T ~ 0 Pa
Qsmooth = T11 [<P+H>7T11+ <P+H>7T11]

with the other smoothed cell counts bspo0th, Csmooth, ANA dsmootr, defined anal-

ogously for the (1,2), (2,1), and (2,2) cells. The estimate (3) inherently
safeguards against poorly chosen model-based estimates {7;;}: If the ob-
served proportions greatly contradict the {7;;}, then the denominator of (3)
will be very large, leading to {n};} heavily weighting the {7;;} values.

The smoothed dissimilarity may be calculated following, for example,

formula (1), such that for objects k and £’
dz'rIZOOth = (bsmooth + Csmooth)/ P

(although any dissimilarity measure based on that “smoothed” 2 x 2 table

could be used).

3 Simulation Study

In this section we describe a simulation study to measure the effect of smooth-
ing the dissimilarities on the accuracy of the clustering of a binary data set.
For a simulated data set of n objects (i.e., individuals), generated from a
built-in clustering structure, we will measure “accuracy” via the statistic

proposed by Rand (1971). For any partitioning of the objects, the Rand



statistic gives the proportion of pairs of objects that are correctly placed ei-
ther together or apart (depending on how the true structure places the pair
of objects). Thus the Rand statistic is
mi + ma
n(n —1)/2

where m; is the count of pairs of objects coming from the same subpopulation
that are (correctly) placed in the same cluster and ms is the count of pairs
of objects coming from different subpopulations that are (correctly) placed
in different clusters. Thus the Rand statistic measures the concordance be-
tween the true clustering structure and the partition yielded by a clustering

algorithm.

3.1 Setup of Simulations

We first discuss the rationale for our mechanism of generating the simulated
data sets. We assume that our data consist of n objects, on which P binary
variables are measured. As is common for binary data, we assume a latent
continuous (specifically, normal) process, in which the binary observations
are generated based on cutpoints. For example, assume Y7,..., Y are inde-
pendent multivariate normal random vectors, having possibly different mean
vectors:

Y~ Np(p;,%),i=1,...,n,j=1,...,C, C <n.

Here C' has a natural meaning as the true number of clusters in the data set.

Then the binary random vectors Yy, ..., Y, are generated by dichotomizing

*

the normal values. Let the n x P data matrix Y* have the rows Y7,...,Y".

For each element Y7 in Y™, let
it > 6,

Y;p -
O 1f Y;; < gpa



where &, is the cutpoint for the p-th latent variable. Then Y;,...,Y,, are
the rows of the matrix Y having elements {Y,}.

By assuming a noisy latent continuous structure, we end up with binary
observations whose values may not reflect the true locations of the processes
generating the data. The greater the amount of noise we incorporate in the
continuous process, the less trustworthy are the resulting observed binary
values. We now specify how the simulations were conducted.

For each data set in the simulation study, we generated a sample of n = 50
objects, each with P = 8 binary variables measured on it, from three sub-
populations. The binary observations were obtained by generating (latent)
multivariate N(u;,X),7 = 1,2,3, vectors Y7,..., Y5, and dichotomizing
each entry in these vectors:

1 ify* >0,
Y, =
0 ifY*<O.

The three subpopulation mean vectors were generated randomly: p; ~
N(—6,1p),puy ~ N(0,Ip), s ~ N(8,1p), where § equals a positive scalar
d times a vector of ones. (Once generated, p,, py and pg were taken to be
fixed and kept constant across simulated data sets.) Note that for larger
0, the cluster centers tend to be more dispersed, creating greater cluster
separation. The within-cluster dispersion was controlled by 3; for most of
the simulations, we chose ¥ = olp, with smaller o yielding tighter clusters.

Once a n x P matrix of multivariate normal data was generated, the
sample of binary data was obtained by transforming each nonnegative data
value to 1 and each negative value to 0. For each of 5000 generated data sets,
the clustering was carried out on this binary data set using, first, the standard
methods based on unsmoothed dissimilarities and, second, methods based
on smoothed dissimilarities discussed in this paper. The performance was

judged by a comparison of the clustering results to the known three-cluster
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structure, as measured by the average (across data sets) Rand statistic value.

3.2 Parameter Settings and Results

We used a variety of different settings for the simulations. We allowed §
(measuring cluster center separation) to take the values 0.5, 1,3, or 5. We al-
lowed o (measuring within-cluster data dispersion) to take the values 1, 5, 10,
or 15. We examined the performance of the smoothed-dissimilarity method
with three different choices of model for the cell probabilities for the 2 x 2 ta-
ble of matches/mismatches: the independence model (7 = {7;;} = 7+ 7;),
the equal-probability (EP) model & = (0.25,0.25,0.25,0.25), and the high-
probability-of-match (HPM) model & = (0.4,0.1,0.1,0.4)". Finally, for each
simulated data set, the “best” 3-cluster partition of the objects was found us-
ing two distinctly different clustering algorithms: The first was a hierarchical
clustering method, average linkage, implemented by the R function hclust
(R Development Core Team, 2006). The other was a partitioning method,
K-medoids (a robust analogue of the K-means algorithm), implemented by
the R function pam (Kaufman and Rousseeuw, 1987) in the cluster package.

In all cases, the value of kK was determined using the objective Fienberg-
Holland approach described above.

Note that, since we average across the 5000 data sets, the Monte Carlo
standard error for each of these proportions (the Rand indices) is at most
0.007 (when the true Rand proportion is 0.5). The Monte Carlo standard
error is probably much smaller in many cases presented here. Using this
standard error, we may at least loosely judge which differences in Rand
statistics are real and which are due to chance.

For the average linkage clustering method, the simulation results are given
in Table 2 and presented graphically in Figure 1. The smoothing approach (in
particular, smoothing toward the independence or equal-probability models)

shows significantly better results in many situations. The biggest advantage
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Table 2: Average Rand statistic values for the (average linkage) clusterings

of the simulated binary data, based on the observed dissimilarities and three

different “smoothed” dissimilarities.

Average Linkage Method

c=1

oc=25

=10

=15

0.5

0.8509 (o)

0.8945 (s/i)
0.9094 (s/E)
0.8204 (s/H)

0.8599 (o)

0.9097 (s/i)
0.9159 (s/E)
0.8302 (s/H)

0.7460 (o)

0.8400 (s/i)
0.8416 (s/E)
0.7292 (s/H)

0.7576 (o)

0.8330 (s/i)
0.8295 (s/E)
0.7372 (s/H)

0.9380 (o)

0.9409 (s/i)
0.9497 (s/E)
0.9312 (s/H)

0.8089 (o)

0.8477 (s/i)
0.8666 (s/E)
0.8040 (s/H)

0.7601 (o)

0.8594 (s/1)
0.8576 (s/E)
0.7377 (s/H)

0.7657 (o)

0.8500 (s/i)
0.8454 (s/E)
0.7476 (s/H)

0.9816 (o)

0.9848 (s/i)
0.9885 (s/E)
0.9813 (s/H)

0.8925 (o)

0.9199 (s/i)
0.9383 (s/E)
0.8544 (s/H)

0.8390 (o)

0.8990 (s/i)
0.8981 (s/E)
0.8116 (s/H)

0.8211 (o)

0.8830 (s/i)
0.8782 (s/E)
0.8015 (s/H)

0.9627 (o)
0.9678 (s/i)
0.9811 (s/E)

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
0.9717 (s/H)

0.9180 (o)
0.9255 (s/i)
0.9475 (s/E)

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
0.9283 (s/H)

0.8803 (o)
0.9162 (s/i)
0.9302 (s/E)

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
0.8459 (s/H)

0.8388 (0)
0.8933 (s/i)
0.8981 (s/E)

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
0.8173 (s/H)

NOTE: Each value is the average (across 5000 data sets) Rand statistic for the
clusterings produced from an average linkage algorithm based on (top within
each cell) the observed dissimilarities (0); (second within cell) the smoothed
dissimilarities based on the independence model (s/i); (third within cell) the
smoothed dissimilarities based on the equal-probability model (s/E); (bottom
within cell) the smoothed dissimilarities based on the high-probability-of-
match model (s/H).
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Table 3: Average Rand statistic values for the (K-medoids) clusterings of

the simulated binary data, based on the observed dissimilarities and three

different “smoothed” dissimilarities.

K-medoids Method

c=1

oc=25

=10

=15

0.5

0.7663 (o)

0.7575 (s/i)
0.7549 (s/E)
0.7670 (s/H)

0.5776 (o)

0.5603 (s/i)
0.5749 (s/E)
0.5746 (s/H)

0.5687 (o)

0.5631 (s/i)
0.5695 (s/E)
0.5659 (s/H)

0.5672 (o)

0.5637 (s/i)
0.5693 (s/E)
0.5644 (s/H)

0.7734 (o)

0.7508 (s/i)
0.7790 (s/E)
0.7692 (s/H)

0.6536 (o)

0.6764 (s/i)
0.6645 (s/E)
0.6383 (s/H)

0.6334 (o)

0.6521 (s/i)
0.6448 (s/E)
0.6155 (s/H)

0.5665 (o)

0.5690 (s/i)
0.5706 (s/E)
0.5624 (s/H)

0.8730 (s/i)
0.9039 (s/E)
0.9393 (s/H)

0.7195 (s/i)
0.7117 (s/E)
0.6979 (s/H)

0.6979 (s/i)
0.6880 (s/E)
0.6606 (s/H)

0.6457 (s/i)
0.6382 (s/E)
0.6077 (s/H)

0.8894 (o)
0.8174 (s/i)
0.8610 (s/E)

(

(

(

(

(

(

(

(
0.9432 (o)

(

(

(

(

(

(
0.9183 (s/H)

0.8007 (o)
0.7794 (s/i)
0.7721 (s/E)

(

(

(

(

(

(

(

(
0.7068 (o)

(

(

(

(

(

(
0.8347 (s/H)

0.7848 (o)
0.7722 (s/i)
0.7594 (s/E)

(

(

(

(

(

(

(

(
0.6817 (o)

(

(

(

(

(

(
0.7829 (s/H)

0.7477 (o)
0.7493 (s/i)
0.7408 (s/E)

(

(

(

(

(

(

(

(
0.6230 (o)

(

(

(

(

(

(
0.7445 (s/H)

NOTE: Each value is the average (across 5000 data sets) Rand statistic for
the clusterings produced from a K-medoids algorithm based on (top within
each cell) the observed dissimilarities (0); (second within cell) the smoothed
dissimilarities based on the independence model (s/i); (third within cell) the
smoothed dissimilarities based on the equal-probability model (s/E); (bottom
within cell) the smoothed dissimilarities based on the high-probability-of-
match model (s/H).

13



Table 4: Average Rand statistic values for the clusterings of the simulated

binary data with correlations.

Average Linkage Method

Correlation
Structure | o =1 oc=25 o =10 o=15
0.8505 (o) 0.7728 (o) 0.7358 (o) 0.7260 (o)
A 0.8364 (s/i) 0.7939 (s/i) 0.7538 (s/i) 0.7574 (s/i)
0.8968 (s/E) 0.8164 (s/E) 0.7794 (s/E) 0.7704 (s/E)
0.8446 (s/H) 0.7565 (s/H) 0.7227 (s/H) 0.7052 (s/H)
0.9063 (o) 0.7636 (o) 0.7615 (o) 0.7669 (o)
B 0.9066 (s/i)  0.8445 (s/i)  0.8263 (s/i) 0.8361 (s/i)
0.9382 (s/E) 0.8483 (s/E) 0.8272 (s/E) 0.8375 (s/E)
0.9024 (s/H) 0.7415 (s/H) 0.7396 (s/H) 0.7485 (s/H)
K-medoids Method
Correlation
Structure | o =1 oc=25 o =10 o=15
0.7856 (o) 0.5992 (o) 0.5998 (o) 0.5698 (o)
A 0.7153 (s/i)  0.5830 (s/i)  0.5871 (s/i)  0.5561 (s/i)
0.7529 (s/E) 0.5937 (s/E) 0.5945 (s/E) 0.5661 (s/E)
0.7727 (s/H) 0.5975 (s/H) 0.5962 (s/H) 0.5687 (s/H)
0.7684 (o) 0.6021 (o) 0.6054 (o) 0.5786 (o)
B 0.6779 (s/i)  0.5907 (s/i) 0.6078 (s/i)  0.5735 (s/i)
0.7180 (s/E) 0.5989 (s/E) 0.6101 (s/E) 0.5804 (s/E)
0.7819 (s/H) 0.5994 (s/H) 0.5965 (s/H) 0.5735 (s/H)

NOTE: Each value is the average (across 5000 data sets) Rand statistic for the
clusterings produced from a K-medoids algorithm based on (top within each
cell) the observed dissimilarities (0); and the smoothed dissimilarities based
on: (second within cell) the independence model (s/i); (third within cell) the
equal-probability model (s/E); (bOttcﬁl within cell) the high-probability-of-
match model (s/H).



for the smoothing approach is when ¢ is relatively large (the right sides of
the plots in Figure 1). This corresponds to data having high within-cluster
variability, the most difficult situation in which to get an accurate partition.
It is for this sort of data for which we intuitively expect the smoothing to be
of the greatest benefit.

For the K-medoids method, the simulation results are given in Table 3
and presented graphically in Figure 2. The comparison among methods is not
especially conclusive when the K-medoids algorithm is used. For most situ-
ations, the various methods produce similarly accurate partitions. For § =1
(medium spacing between clusters), smoothing toward the independence or
EP model does slightly better. On the other hand, for 6 = 3 and o = 1
(large dispersion between clusters, small dispersion within clusters), using
the observed dissimilarities does notably better than smoothing toward the
independence or EP model. Smoothing the dissimilarities toward the HPM
model does the best overall in that situation, though. This latter situation is
the easiest situation in which to get an accurate clustering. When there are
tight clusters that are spaced far apart, smoothing toward a “default” model
seems unnecessary.

In examining the Rand proportions, we see that the proportions based
on the average linkage algorithm are generally somewhat higher than those
based on the K-medoids method. Although we do not wish to definitively
compare the different types of clustering algorithms here, we do note that
the average linkage approach with any of the dissimilarity methods performed
better than the K-medoids method with any of the dissimilarity methods, as
least according to the Rand index.

The simulation results may provide guidelines for the admittedly tricky
question of choosing the model toward which to smooth the dissimilarities.
In the absence of any prior knowledge about the individual objects, we could

smooth toward a noninformative model (independence or equal-probability)

15



when we expect the data to be relatively noisy — that is, when we expect the
within-cluster variability to be large relative to the spacing between cluster
centers. If the clusters are tight and well-spaced, smoothing the dissimilari-
ties toward a high-probability-of-match model seems to be a good strategy.
(With binary data, such a prior judgment might be difficult to make based on
initial data examination; perhaps a plot of principal component scores from
an exploratory principal component analysis could lend some insight.) If we
have prior expectations about how individual objects should be grouped, of
course, we could subjectively choose different 7t values for different object
pairs.

Letting 3 = oIp implies that the set of P normal latent variables are
mutually independent. To investigate the situation when the latent vari-
ables are correlated, we performed some of the simulations under two other
correlation structures. Under correlation structure A, ¥ has elements

(o3} o ifi =7,

0.250 ifi# j.
Correlation structure A assumes equal (positive) correlation among all the
pairs of latent variables. Correlation structure B is a compromise between

structure A and the uncorrelated case; under B, ¥ has elements

)
o if 1 =7,

{oij} = 0250 ifi,je{6,7,8},

0 otherwise.
\

Correlation structure B assumes three of the eight latent variables are pair-
wise positively correlated, while the other pairs are uncorrelated.

Table 4 (and Figure 3) give the results for clustering (using both average-
linkage and K-medoids) under correlation structures A and B. (For all such

results, the between-cluster dispersion parameter ¢ equaled 1.) We see that
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again, the differences among methods is more notable when using the average
linkage algorithm. The results from the independent-data simulations are
basically maintained under these correlation structures: Particularly for the
average linkage clustering, smoothing toward either the independence model
or the equal-probability model produces the most accurate clustering result.

Since the method proposed here relies on a smoothed version of the dis-
similarities rather than those computed from the observed data, it is intuitive
that the method should perform best when the data contain a large amount
of noise (high o). In such cases, the clusters formed using the observed dis-
similarities can be trusted less to reflect the true structure of the data, and
smoothing toward a reasonable model may produce valuable gains.

The simulation results may indicate that (at least in the absence of prior
knowledge), smoothing the dissimilarities toward the independence model is
a valid strategy. This represents a reasonably noninformative choice of model,
and the results yielded from smoothing toward the independence model seem

better or comparable to other choices for many of the settings examined.

4 An Application to Binary Test Data

In this section we apply the smoothed-dissimilarity clustering method to a
real data set, the ACT mathematics test results for 2115 male examinees,
studied in Ramsay and Silverman (2002) and made available on Silverman’s
web site http://www.stats.ox.ac.uk/ " silverma/fdacasebook/testitems.html
in plain text form. The data are given as a matrix of zeroes and ones having
2115 rows (representing the examinees) and 60 columns (representing the
test items). An observation y;; = 0 indicates that student ¢ answered item
J incorrectly, while y;; = 1 indicates a correct response. For the purpose of
this example, we used a subset of the overall data: We selected every fortieth

row to obtain a smaller data set of 53 examinees and 60 test items.
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4.1 Clustering the Test Items

The nature of this data set leads to two possible clustering problems. We
could cluster the male students into natural groups, on the basis of their
responses to the 60 items. We might also wish to cluster the 60 items into
groups. In this latter case, the 53 selected students’ scores (right/wrong) on
any particular item would be the P binary variables measured on it. The
results of the cluster analysis of the items may be easier to understand for
this particular data set: While the students are listed in random order, the
ACT test questions are typically meant to be ordered from easiest to most
difficult. The clustering of items should therefore follow roughly according
to the ordering of the items.

We do not know a priori the correct number of clusters; we used both the
hierarchical average linkage algorithm and the nonhierarchical K-medoids al-
gorithm, trying a variety of choices of C. We examined groupings based on
C = 2,3,4, or 5 clusters. We clustered the items based on (1) the observed
dissimilarities and (2) the smoothed dissimilarities based on smoothing to-
ward the independence model. For the average linkage result, we can examine
the dendrograms showing how the items were partitioned (see Figures 4 and
5). For the K-medoids result, the clusplot function in R allows us to plot
the scores for the first two principal components (PCs) of the data and to
identify the clusters in terms of their scores on the first two PCs. The best
separation, according to these tools, appears to result from choosing C' = 3
clusters. This choice of C also produced a reasonably large value for the “av-
erage silhouette width” (0.111 for C' = 3 using the observed dissimilarities
and 0.101 using the smoothed dissimilarities), a measure of the “goodness-of-
separation” of a clustering partition (Rousseeuw, 1987). The clusplots based
on the observed dissimilarities and based on the smoothed dissimilarities for

C = 3 are shown in Figures 6 and 7. (The clusplots for C' = 4 or greater
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showed much less clear separation.)

For the 3-cluster partition, the separation among clusters is only slightly
different using the method based on the smoothed dissimilarities compared
to using the observed dissimilarities. We now highlight the differences in the
clustering partitions, which are displayed in Table 5 for the average linkage
results and Table 6 for the K-medoids results.

The partition followed the natural item ordering fairly well, especially
with the average-linkage results. For example, the first 18 (apparently easi-
est?) items were placed in cluster 1 by the average linkage algorithm using
the observed dissimilarities; the the first 21 items were placed in cluster 1 by
the average linkage algorithm using the smoothed dissimilarities. Test items
34 and 35 were placed in different clusters by the average linkage algorithm
depending on whether the observed dissimilarities or smoothed dissimilarities
were used.

The clustering results from the K-medoids algorithm differed rather more
substantially from the numerical ordering of the test items. Several items,
such as items 11, 20, 35, 40, and 46, were placed in different clusters by the
K-medoids algorithm depending on whether the observed dissimilarities or
smoothed dissimilarities were used. While for this real data example, it is
impossible to say whether using the observed dissimilarities or the smoothed
dissimilarities produces a “better” partition of the test items, clearly there

were at least a few differences.

5 Conclusion

We have introduced a novel method of smoothing the dissimilarities among
binary data as a preliminary step to cluster analysis. This method, de-
scribed in Section 2, borrows ideas developed for the shrinkage estimation of

cell probabilities in contingency tables. The simulation study in Section 3
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Table 5: Table indicating average linkage clustering of the 60 test items into

three clusters, based on data from 53 male students.

Based on Observed Dissimilarities

Cluster | Test Items
1 1234567891011 1213141516 1718
2 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
3 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
55 56 57 58 59 60
Based on Dissimilarities Smoothed Toward Independence Model
Cluster | Test Items
1 1234567891011 121314 1516 17 18 19 20 21
2 22 23 24 25 26 27 28 29 30 31 32 33 34 35
3 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

95 56 57 58 59 60
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Table 6: Table indicating K-medoids clustering of the 60 test items into three

clusters, based on data from 53 male students.

Based on Observed Dissimilarities

Cluster | Test Items
1 1234567891012 1517 18 21 23 24 25
26 27 28 29 31 32 34 35 38
2 13 14 16 19 20 22 30 36 37 39 40 41 42 44 45
46 47 50 51 52
3 11 33 43 49 53 54 55 56 57 58 59 60
Based on Dissimilarities Smoothed Toward Independence Model
Cluster | Test Items
1 1234567891012 1517 18 20 21 23 24 25
26 27 28 29 31 32 34 38
2 11 13 14 16 19 22 30 35 36 37 39 41 42 44 45
47 50 51 52
3 33 40 43 46 49 53 54 55 56 57 58 59 60
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indicates that the smoothing method most effectively improves clustering ac-
curacy in the most difficult situation for clustering: when the within-cluster
data variability is high and when the true clusters do not have a large amount
of separation. In Section 4, we apply the method to a test item response
data set, in order to cluster the test items based on 53 students’ binary
(correct/incorrect) results.

The method presented in this paper may more accurately characterize
the dissimilarities among noisy binary data by shrinking toward a particular
smooth model. Furthermore, the nature of the shrinkage provides a safe-
guard such that the smoothing method for a reasonably well-chosen model
will typically not produce significantly worse results compared to using the
observed dissimilarities. The computationally straightforward nature of this
smoothing method render it a viable option for investigators seeking to clus-

ter binary data.
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Figure 1: Rand proportions (averaged over 5000 simulated data sets) for
average-linkage clusterings of the simulated data, based on the four different
dissimilarity methods. Key: observed dissimilarities (solid line); smoothed
dissimilarities based on the independence model (dashed line); smoothed
dissimilarities based on the equal-probability model (dotted line); smoothed

dissimilarities based on the high-probability-of-match model (dot-dash line)
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Figure 2: Rand proportions (averaged over 5000 simulated data sets) for
K-medoids clusterings of the simulated data, based on the four different
dissimilarity methods. Key: observed dissimilarities (solid line); smoothed
dissimilarities based on the independence model (dashed line); smoothed
dissimilarities based on the equal-probability model (dotted line); smoothed

dissimilarities based on the high-probability-of-match model (dot-dash line)
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Figure 3: Rand proportions (averaged over 5000 simulated data sets) for
clusterings of the simulated data with built-in correlation structures, based on
the four different dissimilarity methods. Key: observed dissimilarities (solid
line); smoothed dissimilarities based on the independence model (dashed
line); smoothed dissimilarities based on the equal-probability model (dotted
line); smoothed dissimilarities based on the high-probability-of-match model

(dot-dash line)
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Dendrogram of Clusters (observed)
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Figure 4: Dendrogram for the ACT test data, for the average-linkage clus-

tering, based on the observed dissimilarities.
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Dendrogram of Clusters (smoothed, indep)
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Figure 5: Dendrogram for the ACT test data, for the average-linkage cluster-
ing, based on the smoothed dissimilarities (smoothed toward independence

model).
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Figure 6:

test data,

PC plot of Clusters (observed)
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Component 1
These two components explain 21.7 % of the point variability.

Plot of scores for first two principal components for the ACT

for the 3-cluster (K-medoids) partition, based on the observed

dissimilarities.
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Figure T7:

test data,

PC plot of Clusters (smoothed, indep)

o o
~ o
- VAN
o o A
+ +
+
o o o0 O o AA
5 © + + t \
&
«~ o o A 4 F
IS S ° o/ © oo ™ +
2 ° ©
g b n
+
g A o AA A i +
] o o
o © A
o a8
S 4
T
A AN
A o
<
S 4
T
T T T T T T
-0.4 -0.2 0.0 0.2 0.4 0.6

Component 1
These two components explain 22.39 % of the point variability.

Plot of scores for first two principal components for the ACT

for the 3-cluster (K-medoids) partition, based on the smoothed

dissimilarities.
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