1) The following data give emissions rates for six different cars, each driven by three different drivers. The question of interest is whether the mean emission rate differs across the 3 drivers. Since the values within each car will tend to be similar, the cars are treated as blocks in this experimental design. Use Friedman's Test to test for a difference among drivers. Use a significance level of 0.05 . Give the null and alternative hypotheses, test statistic value, decision rule, and p-value. If there is a significant difference among drivers, then which drivers differ from each other?

	Driver		
Car	1	2	3
1	6.2	6.3	6.0
2	12.6	12.9	12.7
3	10.2	10.6	9.8
4	13.0	13.1	13.0
5	5.6	5.9	5.5
6	8.1	8.1	7.8

2) [Required for graduate students, extra credit for undergrads] A random sample of three men and a random sample of five women were asked their ages when they went on their first date. The three men responded with ages $15,17,16$, while the five women responded with ages $12,14,15,10,12$. Using a randomization test and $\alpha=0.05$, test whether girls tend to be younger on their first date. Give the null and alternative hypotheses, test statistic value, and p-value.
3)[Required for graduate students, extra credit for undergrads] Two highway patrolmen kept track of how many tickets they wrote over a period of seven days. The same seven-day period was used for both patrolmen. The first patrolmen wrote $17,15,12,9,17,18,14$ tickets over these days, and the second patrolmen wrote $14,14,15,7,16,18,10$ tickets over the same set of seven days. Using a randomization test and $\alpha=0.05$, test whether the two patrolmen tend to write the same number of tickets per day, on average. Give the null and alternative hypotheses, test statistic value, and p-value.
3) The count of the number of eggs rejected from a shipped crate of eggs was recorded for a random sample of eight crates of eggs. The counts of rejected eggs for the 8 crates were: $4,0,2,0,2,0,2,0$. (a) Use the Kolmogorov test (at $\alpha=0.05$) to determine whether it is reasonable to assume the counts follow a Poisson distribution with mean 1.5. Give the null and alternative hypotheses, test statistic value, and p-value.
(b) Give a 95% confidence band for the true c.d.f. of this distribution of counts.
4) The nitrous oxide emissions of a random sample of 12 cars was measured, yielding the data: 4.8, 6.2, $6.0,5.9,6.6,5.5,5.8,5.9,6.3,6.6,6.2,5.0$. Use the Kolmogorov test (at $\alpha=0.05$) to determine whether it is reasonable to assume the counts follow a normal distribution with mean 5.6 and standard deviation 1.2. Give the null and alternative hypotheses, test statistic value, and p-value.
5) A random sample of fifteen entering freshmen had achievement scores:

481,620,642,515,740,562,395,615,596,618,525,584,540,580,598
Use the Lilliefors test (at $\alpha=0.05$) to test whether these data follow a normal distribution. Give the null and alternative hypotheses, test statistic value, and p-value.
7) The times between arrivals of a random sample of 15 customers at a store were:
3.6,6.2,12.7,14.2,38,3.8,10.8,6.1,10.1,22.1,4.2,4.6,1.4,3.3,8.2

Use the Lilliefors test (at $\alpha=0.05$) to test whether these data follow a exponential distribution. Give the null and alternative hypotheses, test statistic value, and p-value.
8) A random sample of five $6^{\text {th }}$-grade boys from East Bumdoodle scored the following on a literacy test: $82,74,87,86,75$. A random sample of eight $6^{\text {th }}$-grade boys from West Bumdoodle scored the following on that literacy test: $88,77,91,88,94,93,83,94$. Use the Smirnov test (at $\alpha=0.05$) to test whether the two towns' populations of $6^{\text {th }}$-grade boys' literacy scores follow the same distribution. Give the null and alternative hypotheses, test statistic value, and p -value.

