
Identifying influential observations in concurrent functional

regression with weighted bootstrap

Ryan D. Pittmana and David B. Hitchcocka

a University of South Carolina Department of Statistics

ARTICLE HISTORY

Compiled January 17, 2022

Abstract

Metrics such as DFBETAS, DFFITS, and Cook’s Distance are used in ordinary

linear regression to assess the influence each individual observation has on the fitted

model. We seek to quantify the influence of functional observations in the concurrent

linear functional model in which both the predictor and response are functional

observations. We present multiple influence measures that can be used to identify

which functional observations are the most influential on the model. We provide a

weighted bootstrapping with perturbations method to identify when these measures

indicate an observation is significantly influential on the fitted regression model. We

conclude by showing this method’s validity using a simulation study and two real

data examples that fit the model setting.
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1. Introduction

In ordinary linear regression, it is common practice to assess the influence of the indi-

vidual observations [1]. It is important to understand how trustworthy the predicted

outcomes are and how influential each observation is on various results. This paper

will extend ordinary linear regression influence diagnostics to the fully functional linear

regression model framework. We will present additional diagnostic tools that can be

used jointly to identify functional observations with large influence on the model and

the resulting predictions. Some properties of the method will be investigated using a

simulation study. These methods will then be applied to a river stage reconstruction

and a coastal air and water temperature dataset, with computations carried out using

our own R code in combination with functional regression estimation tools within the

fda package [2] in R [3].

Functional linear regression model diagnostics have not been explored to the de-

gree of their non-functional ordinary linear regression counterparts. This is partially

because FDA is still a rapidly growing field of statistics, but also because regression

with functional data adds an extra dimension that can make quantifying influence

more challenging. Some prior work in this field has been done by Shen and Xu [4], who

quantify the influence of many non-functional predictors on a functional response, and

Chiou and Müller [5] who consider the case in which the response variable is functional

but the predictor variables are either multivariate vectors or random functions. Chen,

Huang, and Lin [6] build on Chiou and Müller’s work and is similar to our study, in that

both the response and predictors are functional observations. They calculate a version

of functional Cook’s distance and a likelihood distance, and present a small simulation

study in which they intentionally insert outlying measurement points within a single

functional object and then confirm that their method identifies such points as influ-

ential. We are concerned with identifying an entire influential functional observation

from a whole set of paired functional data (Xi(t), Yi(t)), i = 1, . . . , N . Febrero-Bande,

Galeano, and González-Monteiga [7] build on Chiou and Müller’s work, focusing on

finding influential observations when there are functional predictors and a scalar re-

sponse. While this framework is distinct from our study which has functional responses
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and predictors, they propose a bootstrap with a smoothing method to approximate an

underlying null distribution of each of their metrics to establish estimated quantiles

of their metrics to determine each observation’s influence; we will also endeavor to

approximate a null distribution using bootstrap. Throughout the rest of this paper,

we will build on ideas from several of the aforementioned studies to establish a method

for determining which functional observations are the most influential on a concurrent

functional regression fitted model having one functional predictor and one correspond-

ing functional response variable. Our usage of the concurrent functional model, along

with a smoothing (using B-splines or Fourier bases) of the observed functional data,

implicitly accounts for the nature of the functional observations, in particular the de-

pendency of the measurements across time within the functional data. We present

multiple new functional influence measures and describe a novel weighted bootstrap-

ping with perturbations approach for determining the significance of those measures.

Then we provide a simulation study to assess the performance of the method, and we

conclude with two different regression applications with real functional data.

2. Influence measures in the functional framework

Simple linear regression relates one predictor vector X and one corresponding response

vector Y via the fitted equation, ŷ = β̂0+ β̂1X. Our interest is in how influential each

single observation is in estimating that relationship. It is common to use measures

such as the diagonals of the hat matrix to measure an observation’s leverage, and

DFBETAS, DFFITS, and Cook’s distance [8] to identify influential events by cal-

culating each measure for every observation (formulas can be found in [9]). If any

observation has a calculated influence measure above some corresponding accepted

threshold then it should be investigated, and remedial measures may be necessary to

produce reliable model results.

Using the ordinary regression formulas as a starting point, we applied these met-

rics to the concurrent functional regression model that relates a set of functional

predictors Xi(t), i = 1, . . . , N , to a corresponding set of functional responses Yi(t) at
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each time t in the domain T :

Yi(t) = β0(t) + β1(t)Xi(t) + ϵi(t), i = 1, . . . , N, t ∈ T . (1)

In the functional data framework, each influence measure is calculated at each location

in the observation, creating measures that are functions of t. The resulting formulas

are:

hi(t) = ith diagonal of the N ×N matrix Ht where Ht = Xt

(
XT

t Xt

)−1
XT

t (2)

DFBETASp,i(t) =
β̂p(t)− β̂p(i)(t)

se(β̂p(i)(t))
, p = 1, 2, i = 1, . . . , N (3)

DFFITSi(t) =
ŷi(t)− ŷi(i)(t)√
MSE(i)(t)hi(t)

, i = 1, . . . , N (4)

Di(t) =

∑n
j=1

(
ŷj(t)− ŷj(i)(t)

)2
(k + 1)MSE(t)

, i = 1, . . . , N (5)

In Equation (2), Xt is a 2×N design matrix defined at time t. β̂p(t) is the coefficient

estimate (for p = 0, 1) using all N observations in the calculation, and β̂p(i)(t) is the

coefficient estimate (for p = 0, 1) when observation i is left out. Similarly, ŷi(t) is

the predicted response curve for observation i with all N observations and ŷi(i)(t) is

that same prediction when observation i is excluded. ŷj(i)(t) is the predicted response

value for observation j when observation i is withheld. Note that the values of β̂p(t),

se(β̂p(t)), MSE(i)(t), ŷi(t), etc., are calculated with the concurrent functional regres-

sion model, creating measures that are time dependent. Taking the mean (across the

n timepoints) of the absolute values of the metric for each observation gives a single
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convenient measure of influence for that observation. Therefore, we define the follow-

ing:

|DFBETASp|i =
1

n

∑
j∈{1,...,n}

|DFBETASp,i(tj)| for i = 1, . . . , N (6)

|DFFITS|i =
1

n

∑
j∈{1,...,n}

|DFFITSi(tj)| for i = 1, . . . , N (7)

Di =
1

n

∑
j∈{1,...,n}

Di(tj) for i = 1, . . . , N (8)

Even in the non-functional regression scenario, an easily defined threshold to de-

termine if the measure is “large” is not readily agreed upon and is often ad hoc. In

functional regression, those informal cutoffs may be even less appropriate. Therefore,

we will use a bootstrapping approach (with perturbations) on each functional metric

to determine how large a metric’s value must be to label an observation as influential.

We provide a simulation study in which we evaluate the performance of each func-

tional influence measure. We apply these metrics in the context of river stage data

during floods. Lastly, we apply these measures to another dataset that investigates

the relationship between air and water temperatures at weather stations along the US

coastline.

3. Bootstrapping to approximate a null distribution of influential

measures

In the functional regression framework, we now propose a formal test to determine

whether the larger values of these regression diagnostic metrics are statistically sig-

nificantly large. In order to discern this, we repeatedly resample the functional data,

calculate the influence measure of interest for each resampled data set, and compare
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these calculated values to the metrics from the observed data. We refer to our approach

as “weighted bootstrapping with perturbations.” We use weighted bootstrapping to

create a distribution of metric values that serves as a null distribution, i.e., a distri-

bution for the metric under the condition that there is no especially influential curve.

To accomplish this, when selecting our bootstrap sample we propose to sample the

apparently less influential observations from our observed curves more often than the

apparently most influential observations. We start by defining any particular measure

of influence (averaged across time) generically as ri, calculating it for each observation,

and then using the following equation to translate the metric value for observation i

into a selection probability θi:

θi =
(1/ri)

α∑
i [(1/ri)

α]
, α ≥ 0. (9)

Note that α = 0 corresponds to equal selection probabilities for each observation.

In general α should not exceed 0.5 and is most crucial when N is small. When α

exceeds 0.5, the selection probabilities of the more influential observations becomes

too small and the resulting bootstrap samples consist mostly of the observations with

minimal influence, leading to an unreliable resulting null distribution. When N is small

and one observation from the sample has an extreme (high or low) average measure of

influence compared to the rest, it is possible that, in a certain bootstrap iteration, that

observation will be selected often enough to constitute most of that iteration’s sample,

unless it has a small selection probability. This results in misleading and sometimes

incalculable influence measures for that sample. To correct for this, we provide the

following weighted bootstrapping with perturbation method. While this method can

be implemented for any sample size, it is most useful in the small sample setting.

(1) Define ri for each observation to be a particular influence measure of interest

(namely, one of |DFBETASp|i, |DFFITS|i, or Di).

(2) Select an appropriate value of α (or allow a range of choices) and calculate θi

for i = 1, . . . , N .

(3) Sample N observations with replacement from the original set of data, where
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the ith event has probability θi of being selected.

(4) Apply independent realizations of a perturbation process to each sampled re-

sponse curve. For our perturbations, we use the Ornstein-Uhlenbeck process,

approximated discretely using the Euler-Maruyama method (more details be-

low). Each bootstrap sample then consists of N functional pairs {(X∗
1 (t), Y

∗
1 (t)),

. . . , (X∗
N (t), Y ∗

N (t))}.

(5) Using these new pairs of functional data, fit the concurrent functional regression

model and calculate the same measure of influence, for each observation i =

1, . . . , N .

(6) Repeat Steps 3-5 for the desired number of bootstrap iterations (B) to obtain

N × B values of the metric, which approximate a null distribution for that

influence measure.

(7) The original metric from the observed dataset can be compared to percentiles

from the respective bootstrap distribution to determine whether the largest

values identified in the original data analysis are significantly large relative to

the null distribution.

Having identical observations selected repeatedly in a given bootstrap sample could

distort the calculated metrics because any curve sampled only once might be deemed

influential simply because it differed from the other observations. To avoid this, we

added small perturbations to the sampled response curves to ensure that no two

sampled observations are identical, without obscuring the underlying relationship be-

tween the predictor and response curves. Our perturbation process is the Ornstein-

Uhlenbeck process approximated via the smoothed Euler-Maruyama method. The

Ornstein-Uhlenbeck process, defined by Uhlenbeck and Ornstein [10], is xt defined by

the stochastic differential equation dxt = θ(µ − xt)dt + σdWt, where θ > 0 is the

drift parameter that pulls the process back to its mean µ and σ > 0 is the standard

deviation of the error added to the process. The value Wt represents the Wiener pro-

cess. The Euler-Maruyama approximation yields discrete values of this process and is
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applied to the functional response curves using:

κn+1 = κn − θ(κn)δt+ σZ
√
δt (10)

where κ0 is initialized by selecting a single value from a N(0, σ2) distribution and

where Z is a random standard normal value.

While there is no general rule of thumb for choosing θ and σ, we recommend that

the drift parameter θ should range from 0.5 to 1 and σ should be chosen based on

the values that are being perturbed. Since θ is responsible for pulling the process back

towards the mean, if it is too small then the perturbed curve becomes too different

from the original curve. The value of σ should be selected based on the range of the

functional observations being perturbed using the following method:

(1) Calculate γ = mean of {range[y1(t)], . . . , range[yN (t)]}, where range[yj(t)] =

max
t

yj(t)−min
t

yj(t).

(2) Set γl = γ/3 and γu = γ/2.

The value of σ can reasonably be between γl and γu. Any combination of θ and σ

following these criteria appropriately adds enough variation to the underlying curves

without extensively altering them. For each bootstrap iteration we randomly select θ

from Uniform(0.5, 1) and σ from Uniform(γl, γu).

The ideal value of α in Equation (9) will vary based on the observed measures

from the initial dataset. In general, we recommend using α = 0.5 when N is small

or when on of the observed measures is noticeably larger or smaller than the rest.

If values of the metric have little variability, the bootstrapped percentiles will be

similar regardless of α ∈ (0, 0.5); however, when the observed influence measures

are more spread out or one observation’s influence measure is much larger than the

rest, using α = 0.5 dampens the effect that the observation has on the approximated

percentiles, resulting in percentiles that better resemble a null distribution. This allows

truly significant influential observations to be flagged rather than be dominated by the

values for the most influential observations. For large sample sizes, an observation with
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a large influence measure has less impact on the approximate null distribution as it

is less likely to be sampled in a given iteration regardless of the value of α compared

to when sample size is small; therefore, using α = 0 in large sample scenarios is

appropriate. Table 2 in Section 5.2 provides an example of the selection probabilities

corresponding to various levels of α. If the sample size is moderate, or it is unclear if

the largest influence measure is too much larger than the next highest, we recommend

performing the weighted bootstrap analysis on the data using both α = 0 and α = 0.5

independently and comparing the resulting percentiles to see the effect of the more

influential observations.

After performing this bootstrapping method, we recommend marking the 90th,

95th, and 99th percentiles. The percentiles can then be used to identify the significantly

influential functional observations from the initial dataset by comparing the observed

measures to the resulting percentiles. We define a value above the 90th percentile as

moderately influential, above the 95th percentile significantly influential, and above the

99th percentile as highly significantly influential and requiring further investigation.

4. Simulation study

We investigate the performance of our method in identifying influential observations

in a simulation study. For this example, we generate as simulated predictor functions

N independent X(t) curves where {1, 2, . . . , 1000} using the following formula:

X(t) = (t/12)[as sin[(1/ks)(t− ds)] + cs][ac cos[(1/kc)(t− dc)] + cc]

where each of the N curves is generated by randomly selecting values of the parameters

within the equation.

• as, ac, cs and cc are independently sampled from the list {−3,−2,−1, 0, 1, 2, 3}.

• ks and kc are sampled from the list {−300,−200,−100, 100, 200, 300}.
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• ds and dc are sampled from the list {−100,−50, 0, 50, 100}.

By alternating the combination of parameter values used to generate the functional

data, we produce curves that are similar and resemble the same underlying curve

m(t) = t/12. An example of N = 20 X(t) curves are shown in Figure 1. Note that the

simulation results are not changed if the parameters’ ranges are expanded as long as

they are the same for all N curves.

Figure 1. Example of N = 20 generated X(t) curves using the described functional data generation method.

Next we set the functional slope and intercept functions to be:

β0(t) = cos(t/200) + 2 (11)

β1(t) = sin(t/200) + 2 (12)
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Figure 2. Defined functional intercept β0(t) (solid blue) and functional slope β1(t) (dashed red) used to
generate response curves Yi(t) using Xi(t).

We dampen the relationship between the predictor and response curves by gen-

erating noise functions ϵi(t) to slightly distort the functional relationship between

each pair of X(t) and Y (t) curves. We do this by adding realizations of the Ornstein-

Uhlenbeck process, approximated by the Euler-Maruyama method, to the mean re-

sponse curves calculated using the generated predictor curves and the slope and in-

tercept functions applied to Equation (1). An example of resulting set of simulated

response curves is shown in Figure 3.

As a preliminary check that these generated data followed our functional lin-

ear model, before introducing any contamination, we fit the model for each of 100

generated data sets and verified the estimates of β0(t) and β1(t) resembled the true

functional slope and intercept on average. However, all further analysis was done on

simulated data with contamination, as we described next.

We intentionally contaminated the β1(t) function for one of the N observations
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Figure 3. Example of N = 20 response (Y (t)) curves used in simulation with no contaminated observations
(λ = 1).

and see how often our method identifies the contaminated observation as influential.

For this contaminated observation, we let β1(t) = λ × sin(t/200) + 2 for some λ > 0.

Clearly, λ = 1 represents the control case in which the contaminated observation

is generated the same way as the others. In this simulation, we set λ at the levels

{0.5, 0.75, 0.9, 1, 1.1, 1.25, 1.5, 1.75, 2.0} and examine the performance of our approach

to detect influential curves in the functional regression model. Figure 4 gives an ex-

ample of N = 20 response curves with the contaminated curve generated using λ = 2.

We also investigate the effect of varying α when N = 100, N = 50, N = 20, and

N = 10 using the following method:

(1) Select λ.

(2) Generate N sets of {Xi(t), Yi(t)} curves with one Yi(t) curve contaminated using

λ.
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Figure 4. Example of N = 20 response (Y (t)) curves used in simulation with one outlier (red) using λ = 2.

(3) Calculate the functional influence measure (|DFBETAS0|i, |DFBETAS1|i,

|DFFITS|i, or Di ) for i = 1, . . . , N .

(4) Select α and calculate the selection probabilities θi for each observation using

Equation (9).

(5) Perform B = 100 bootstrap iterations, sampling the N observations with re-

placement, calculating the influence measure for each observation in each itera-

tion (yielding NB values of the measure).

(6) Determine the percentile relative to this bootstrap distribution of the originally

contaminated observation’s influence measure, tracking whether it is above the

95th percentile.

(7) Repeat this process 100 times for each combination of the desired influence

measure; λ; and α.

Note that for each data generation, the bootstrapping process was executed using each

choice of α on the same generated data.
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Figure 5. Power functions displaying the average proportion of contaminated observations above the 95th

percentile for the four influence measures and different values of α (with error bars representing one standard
error) for N = 100.
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Figure 6. Average p-value (1− percentile within bootstrap distribution) of contaminated observations for the
four influence measures and different values of α (with error bars representing one standard error) for N = 100.
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Figure 5 shows the average proportion of contaminated observations that are

above the 95th percentile for each influence measure when N = 100. This is analogous

to the power of the procedure at an implied significance level of 0.05. As λ moves

away from 1, the proportion of contaminated observations flagged increases for each

measure. This correctly indicates that when an observation is more extreme, it is

flagged as influential more often. When usingDFFITS, the contamination need not be

especially extreme for this value to be consistently above the 95th percentile, whereas

when using the functional Cook’s distance, the contamination must be more extreme

for D to be flagged on average.

Figure 6 provides additional results from the same simulation. Here we plot the

average p-value, which is 1 minus the average percentile within the bootstrap distribu-

tion of the contaminated observation. As λ moves away from 1, the p-value decreases,

indicating that the contaminated observation’s influence measure is frequently signif-

icant. Figure 5 and Figure 6 also show that with a large sample size of N = 100, the

effect of α is negligible.

Figure 7 and Figure 8 show plots of the power and average p-value when N = 10.

As λ moves further from 1 the bootstrap method detects the contaminated observation

more often. Note that with a small sample size, setting α = 0.5 slightly increases the

power and reduces the average p-value (especially with |DFFITS|) by better damp-

ening the effect the contaminated observation has on the bootstrap null distribution.

When N = 10, using the functional Cook’s distance, the bootstrap method almost

never marks the contaminated observation as influential, within the range of λ we

used. Given these results, in a real data application of this method, if an observation

is influential based on the bootstrap approach with Cook’s distance, then it is likely

that the observation is strongly influential on the functional model. Similar plots when

N = 50 and N = 20 are provided in the supplementary material and show analogous

patterns to the sample sizes discussed above.

Overall, we recommend approximating a null distribution for each of the four

measures to evaluate the overall influence of each observation. When the sample size

N is large, using α = 0 is recommended given the minor differences in p-value and
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Figure 7. Power functions displaying the average proportion of contaminated observations above the 95th

percentile for the four influence measures and different values of α (with error bars representing one standard
error) for N = 10.
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Figure 8. Average p-value (1− percentile within bootstrap distribution) of contaminated observations for the

four influence measures and different values of α (with error bars representing one standard error) for N = 10.

power. When the sample size is small, we recommend performing the bootstrapping

method with α = 0.5. If no measure is substantially larger than the rest, then the sets

of percentiles will be similar regardless of the choice of α; however, if one observation is

extremely influential, then it will generally inflate the higher percentiles when α = 0.
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5. Application: River stage data during flood events

5.1. Applying the functional influence detection to river stage data

Pittman, Hitchcock, and Grego analyzed river stages from two related gage locations

at Congaree National Park near Columbia, South Carolina [11] . A novel landmark

alignment technique was used to determine objectively the optimal start and end

points of ten flood events in which the Congaree River [12] flowed over bank, through

the floodplains, and into Cedar Creek [13]. This resulted in 10 historic flood events

that could be directly used in the concurrent functional model. The purpose of using

functional regression was to relate the Congaree River stage to the Cedar Creek stage

during flood events. Then this relationship could be used to reconstruct the Cedar

Creek stage during a major flood event in October 2015 when the Cedar Creek gage

went offline but the Congaree River gage remained functional.

The first measure of influence we calculate for the river stage data is

DFBETASp,i(t) where p = 0 represents the intercept function and p = 1 the slope

function. To calculate DFBETASp,i(t), an entire flood event was removed and the

coefficient functions re-estimated. One of the events with the most influence on the

estimation of β0(t) and β1(t) is the February 2020 flood event. Figure 9 shows the

difference between β̂0(t) and β̂1(t) using all ten events (black curve) and with the

February 2020 event removed (red curve). The distance between these curves at each

point is the numerator of the DFBETASp,i(t) formula. Analogous plots for the re-

maining nine events are shown in the supplementary material.

DFBETASp,i(t) for the ten events is given in Figure 10. We see no obvious

outlying event, and only a couple of the curves visually deviating far from the others.

To determine which event has the most impact on the estimates β̂0(t) and β̂1(t),

values of |DFBETASp|i of each event i = 1, . . . , 10, are provided in Table 1. Most of

the DFBETASp,i(t) values remain within the standard threshold values in the non-

functional scenario, indicating that the cutoffs used in ordinary linear regression may

not be too different than those appropriate for the functional framework.
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Figure 9. Comparison of β̂0(t) and β̂0(i)(t) (top) and β̂1(t) and β̂1(i)(t) (bottom) where the black solid curve

represents the βp(t) estimate with all 10 historic flood events included and the red dashed curve is the estimate
when the February 2020 event is removed.

The February 2020 and August 1995 flood events had the highest |DFBETASp|,

indicating that these events have the most influence on the β0(t) and β1(t) estimates

in the concurrent model. The informal cutoff used in ordinary linear regression is

2/
√
N = 2/

√
10 = 0.632. While this value should not be unthinkingly applied in the

functional framework, it gives us a decent starting point.

For i = 1, . . . , 10, DFFITSi(t) measures the effect of event i on the predicted

value of the response for event i at each t. The fitted curves Ŷi(t) and Ŷi(i)(t), based on

the regression’s fit with and without event i are given in the supplementary material,

along with each calculated DFFITSi(t). The most notable difference in fitted curves

is in the tenth event (February 2020). While none of the DFFITSi(t) curves are
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Figure 10. DFBETAS(p)(t) for all ten historic flood events (solid lines) with a reference of what may be

considered large (dashed line) in non-functional linear regression ±0.63 = ±2/
√
N for N = 10.

Average Influence Measures

Event |DFBETAS0| |DFBETAS1| |DFFITS| D
August 1995 0.552 0.527 0.927 0.1223
February 1998 0.104 0.113 0.827 0.085
March 2003 0.361 0.387 0.898 0.103
May 2003 0.303 0.339 1.797 0.258
Sept. 2004 0.232 0.246 1.801 0.235
March 2007 0.421 0.396 1.712 0.436
February 2010 0.109 0.122 0.853 0.068
May 2013 0.151 0.132 1.079 0.137
November 2018 0.356 0.410 0.748 0.069
February 2020 0.444 0.445 4.062 2.312

Table 1. Mean of each influence measure across t for each of the events i = 1, . . . , 10 with the highest values

in bold.

particularly flat, Figure 11 shows that DFFITS10(t) is the most sporadic and has the

largest measurements. Table 1 provides |DFFITS|i for each event (averaging across

t).

Using only Table 1 without any other context, the February 2020 event had by far

the highest |DFFITS|, indicating that this event has the most influence on the fitted

functional regression equation. All DFFITSi(t) graphs, i = 1, . . . , 10, are shown in

the supplementary material, but Figure 11 presents DFFITS(t) for the August 1995

and February 2020 flood events, showing just how large the February 2020 event’s

DFFITS(t) is. The large |DFFITS| for February 2020 is not merely the result of

a single extreme spike but rather a truly significant impact throughout the domain

of the event, in contrast to the August 1995 event, which has a small spike at the

beginning of of its domain but overall is not especially influential on the fitted model.

Both the table and the graphs elucidate that based on the DFFITS influence measure
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the February 2020 event is the most influential event in the functional regression on

these river stage curves.

Figure 11. DFFITS(t) for the August 1995 (left) and February 2020 (right) flood events (solid curve) as

well as an informal cutoff line at ±1 (dashed lines).

Next, we conducted a similar analysis to assess a functional version of Cook’s

distance Di(t), which measures each event’s influence on the set of all fitted curves.

All ten plots of Di(t) are given in the supplementary material, but Figure 12 shows

the measure for the August 1995 (left) and February 2020 (right) events along with

a dashed line at y = 0.757 = F (0.5, 2, 8), a customary indicator of a potentially large

Cook’s distance [9]. The plot for the August 1995 event shows that it is generally not

influential on the functional regression equation, but the February 2020 event shows

by far the highest Cook’s distance values of all the events, indicating that this event

has the most impact on the set of all fitted curves.

With a large number of functional observations, looking through each observa-

tion’s Di(t) graph is not feasible, so examining Di, for i = 1, . . . , N , helps quickly

locate the most influential events. Table 1 confirms that the February 2020 flood event

has the highest impact on the set of all fitted curves with D = 2.312, with the next

highest being only 0.436.

We calculated each of these functional influence metrics (namely functional ver-

sions of DFBETAS0, DFBETAS1, DFFITS, and Cook’s distance) to determine

which of the ten complete flood events used in the functional regression is the most

influential. The values of each of these metrics all point to one main conclusion: The
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Figure 12. Cook’s distance D(t) for the 1995 (left) and 2020 (right) flood events, showing how influential

the 2020 event is on the set of all fitted curves with a dashed line at the informal ordinary regression threshold

y = F (0.5, 2, 8) = 0.757.

February 2020 flood event had the most influence on the regression model used to

reconstruct the October 2015 Cedar Creek curve. It had the largest |DFFITS|,

the highest D by a significant amount and the second highest |DFBETAS0| and

|DFBETAS1|. The diagnostic plots for the February 2020 event indicate that the

higher average values are not the result of a single spike at only one portion of the

event but rather a result of the event truly being more influential over the entire

domain.

5.2. Applying bootstrapping with perturbations method to river stage data

Since the average range for the ten Cedar Creek curves is 8.413, we generated values of

σ from Uniform(3, 5), and generated θ from Uniform(0.5, 1). We performed B = 500

iterations of this bootstrapping with perturbation (generating new values of σ and θ

each time), giving us N = 10 of each metric for each bootstrap sample for a total

of 5000 realizations of each statistic. The empirical distribution of these 5000 realiza-

tions approximated the null distribution of each metric. For example, to approximate

the null distribution of |DFFITS|, we let ri = |DFFITS|i, for i = 1, . . . , N , when

calculating θi (given in Table 2).

From the table, we see the selection probability for the events with the largest

|DFFITS| decreases as α is increased. For example, the February 2020 event has the
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Event α = 0 α = 0.1 α = 0.3 α = 0.5

August 1995 0.1 0.103 0.108 0.112
February 1998 0.1 0.104 0.111 0.118
March 2003 0.1 0.103 0.109 0.114
May 2003 0.1 0.096 0.088 0.080
September 2004 0.1 0.096 0.088 0.080
March 2007 0.1 0.1 0.099 0.098
February 2010 0.1 0.104 0.110 0.117
May 2013 0.1 0.175 0.103 0.104
November 2018 0.1 0.105 0.115 0.124
February 2020 0.1 0.089 0.069 0.053

Table 2. The probability θi that each flood event is selected into the bootstrapped sample for the |DFFITS|
measure using different choices of α.

largest |DFFITS|, and its selection probability is about half as large when α = 0.5

relative to when α = 0 (equal selection probability), ensuring that event does not

affect the bootstrapped percentiles unduly.

We repeat this process for each influence measure of interest, where the selec-

tion probabilities θi for each observation are calculated using the observed influence

measure for observation i. The resulting 90th, 95th, and 99th percentiles from each

measurement’s approximate null distribution, along with the maximum observed value

for each metric, are given in Table 3.

The August 1995 flood event had the largest influence on the fitted regression

coefficients. Its |DFBETAS0| = 0.552 and |DFBETAS1| = 0.527. Table 3 shows that

these averages fall slightly above the 90th percentile of the approximate null distribu-

tion of |DFBETAS0| for α = 0 but slightly below that percentile in the approximated

distribution when α = 0.5. This indicates that while this observation does have the

highest influence on the functional intercept estimate, it is not significantly large. The

same conclusion holds true for the influence on the functional slope estimate, measured

by |DFBETAS1|. The August 1995 event has the largest observed |DFBETAS1|, but

it barely surpasses the 90th percentile when α = 0 and is below the 90th percentile

when using α = 0.5 which is the recommended value since the sample size is small.

The February 2020 flood event had the largest |DFFITS| by a wide margin.

The observed value for the February 2020 event’s |DFFITS| was 4.062, which far

exceeded the approximate null distribution’s 99th percentile for either α, indicating
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|DFBETAS0| α = 0 α = 0.5
90% 0.535 0.570
95% 0.681 0.718
99% 0.972 1.067

Maximum observed value: 0.552 (Aug. 1995)

|DFBETAS1| α = 0 α = 0.5
90% 0.525 0.560
95% 0.652 0.694
99% 0.978 0.946

Maximum observed value: 0.527 (Aug. 1995)

|DFFITS| α = 0 α = 0.5
90% 1.991 1.767
95% 2.563 2.238
99% 3.384 3.429

Maximum observed value: 4.062 (Feb. 2020)

D α = 0 α = 0.5
90% 0.699 0.408
95% 1.346 0.682
99% 2.650 2.417

Maximum observed value: 2.312 (Feb. 2020)
Table 3. The bootstrapped 90th, 95th and 99th percentiles for each influence measure from the approximate

null distribution (N = 10 and B = 500) along with the maximum observed measure from the river stage data.

that the observed |DFFITS| for the February 2020 event does have a significant

impact on the regression model’s prediction of its response. Evidence of its influence is

strengthened by the approximate null distribution of Di, measuring how much all the

fitted values change when the ith observation is deleted. The February 2020 event’s

D = 2.312, which falls beyond the null distribution’s 95th percentile for every α.

Clearly the February 2020 flood event had a significant impact on the fitted functional

regression model results and should be further investigated.

There are several potential reasons that the February 2020 flood event stands out

as more influential than the others across many of these diagnostic measures. Of the

ten events, the February 2020 flood event has the highest recorded Congaree River

crest. The difference between the February 2020 Congaree crest and the next highest

crest from March 2003 is greater than the difference between the March 2003 Congaree

River crest and the lowest crest of any event in the sample (May 2003). This large

difference in stage crest could be one factor that leads to the February 2020 flood event
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standing out as influential in the fitted model.

6. Application: Air and water temperature along the United States

coastlines

At any given time of year, the air and water temperature at a specific location are

strongly related. In this section, we quantify this relationship across the year 2020 using

35 United States coastline stations that record the local air and water temperature in

six-minute intervals throughout the year, for a total of 87,600 potential measurement

time points. We obtained the data from the National Data Buoy Center [14]. To be

eligible for our sample, stations needed to have at least roughly 90% non-missing values

for each of air and water temperatures over the 87,600 timepoints in 2020. We first

preprocessed these data and then fit the concurrent functional model to establish a

general relationship between air and water temperature across 2020. We then used our

functional influence detection procedure to identify locations with the most influence

on the model estimates, perhaps due to having a significantly different air and water

temperature relationship compared to other locations.

These 35 locations are located all around the United States coastline, including

East Coast, West Coast, Gulf of Mexico, Alaskan coastline, and Hawaii. The station

locations are displayed in Figure 13, and each specific location is listed in the supple-

mentary material.

For each set of temperature curves, there is a lot of day-to-day variability, there

are a handful of missing temperature readings, and the records are generally recorded

every six minutes, leading to datasets with over 80,000 records. Therefore, before the

regression, we used linear interpolation to fill in any missing records, then smoothed out

the daily variation to focus on the yearly trends. Lastly, while preserving the underlying

relationship between air and water temperature throughout the year, we resized the

length of each smoothed discretized curve to 1000 equally-spaced observations across

the year to speed up the functional calculations. The resulting smoothed air and

water temperature curves can be found in Figure 14, with two specific air and water
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Figure 13. Exact location of each station used to create the functional regression model between air and

water temperature. The map was created using the mapproj package in R [15].

temperature curves shown in Figure 15. Note that the low gold curve in Figure 14 is

from Red Dock, Alaska, which is depicted with the blue dot in Figure 13.

6.1. Applying the time-dependent influence measures to air and water

temperature data

We represented each of these 35 pairs of functional observations using 21 B-spline basis

functions. We then estimated β̂0(t) and β̂1(t) from functional regression equation (1)

(estimates shown in Figure 16).

Note that the slope function β̂1(t) is positive year-round. This indicates that no

matter the time of year, as air temperature increases, water temperature also increases.

This is intuitive, but we also see that the strength of this relationship is not constant

throughout the year. During the summer months, an increase in air temperature results
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Figure 14. All 35 smoothed Air (left) and Water (right) temperatures used in the model.

Figure 15. Air and Water Temperature for Amerada Pass, Louisiana (left) and Westport, Washington (right).

in a larger increase in water temperature than in the winter months on average.

The main purpose of this example is to apply our influence measures analysis

on a real dataset rather than to predict missing water temperatures using their cor-

responding air temperatures; however, prior to our investigation of influence, we did

confirm that a leave-one-out model does a good job of predicting the omitted functional

response.

We calculated each functional influence metric (|DFBETAS0|i, |DFBETAS1|i,

|DFFITS|i, and Di) for each of the 35 functional observations. The complete table of

results can be found in the supplementary material. In general, the only observation

that visually stands out as more influential than the rest is the aforementioned Red Dog

Dock station in Alaska. All of its influence measures are at least twice as large as the
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Figure 16. Estimated functional intercept β̂0(t) (left) and estimated functional slope β̂1(t) (right) and cor-
responding pointwise 95% confidence interval.

next highest, indicating that it is likely very influential on the model; our bootstrapping

with perturbations method can confirm that this observation is influential and can

evaluate the potential influence of the other observations.

The average range of water temperatures (γ) is approximately 13.2 across the

stations, so we generated σ from Uniform(4.4, 6.6) in our perturbation method. We

performed our method for each metric with B = 100 bootstrap iterations and used

α = 0 and α = 0.5. Table 4 gives the resulting percentiles for each metric.

For every influence measure, Red Dog Dock (observation 31) is well above the

99th percentile, indicating that it is highly influential on the regression equation. This

makes sense given how much lower the air temperature is at this location in the

winter months compared to the rest of the observations while the water temperature

is not as low, proportionally. Additionally, given how much larger the influence of this

observation is compared to the rest, using the percentiles calculated using α = 0.5 is

most appropriate.

While the other Alaskan stations have moderate influence, the next highest

|DFBETAS0| = 0.255 at the Port Orford station. If the unweighted sampling prob-

abilities are used (α = 0), this station is above the 90th percentile; however, if the

effect of the most influential observations is dampened (α = 0.5), we conclude that

this event does not have a significant impact on the intercept estimate.

The Fernandina Beach location in Florida had the second highest
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|DFBETAS0| α = 0 α = 0.5
90% 0.216 0.263
95% 0.284 0.322
99% 0.678 0.497

Maximum observed value: 1.418 (Red Dog Dock)

|DFBETAS1| α = 0 α = 0.5
90% 0.214 0.230
95% 0.274 0.288
99% 1.027 0.437

Maximum observed value: 1.426 (Red Dog Dock)

|DFFITS| α = 0 α = 0.5
90% 0.795 0.861
95% 0.876 0.960
99% 1.240 1.200

Maximum observed value: 1.863 (Red Dog Dock)

D α = 0 α = 0.5
90% 0.022 0.026
95% 0.027 0.031
99% 0.359 0.043

Maximum observed value: 0.623 (Red Dog Dock)
Table 4. The bootstrapped 90th, 95th and 99th percentiles for each influence measure from the approximate

null distribution along with the maximum observed measure from the air and water temperature data.

|DFBETAS1| = 0.286. Based on the null distribution with α = 0.5 this value was

well above the 90th and near the 95th percentile, indicating that it also has a notable

influence on the slope estimate.

Atlantic City, NJ had the second largest |DFFITS| = 0.957. Similarly, when

using α = 0.5, this station is easily above the 90th and near the 95th percentile,

indicating that it also has a noteworthy influence on the fitted values from the model.

The functional Cook’s distance had different results than the others. The largest

observed D = 0.623 (Red Dog Dock), and the second largest was 0.026, so that intu-

itively Red Dog Dock is an influential observation. Note that when using a positive α

so that the more influential observations are being sampled with a low probability, the

effect Red Dog Dock itself has on the percentiles is nullified and the 99th percentile

decreases to within the range of the rest of the observed Di measures. This shows the

benefit of the weighted sampling, because with α > 0 there is more support that the

observation with D = 0.026 (Atlantic City) is a moderately influential observation,
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as it is above the 90th percentile even when the effect on the null distribution of the

most influential observations is nullified. Examining these measures collectively, it is

clear that the Red Dog Dock location has a substantially large amount of influence

on the functional regression model, which makes sense given the observed air temper-

ature curve and the location of the station. Additionally, our method identifies the

Atlantic City observation as also influential on the functional regression model. In

a complete functional regression analysis of these data, we recommend investigating

these observations more closely for possible removal.

7. Conclusion

Our method successfully offers a practical way of identifying influential functional ob-

servations in the concurrent model. By formulating the ordinary regression influence

metrics as a function of time and then averaging them across t for each observation, we

successfully detect the observations with the most influence on the estimates and pre-

dictions from the model. Additionally, simulation shows that our bootstrapping with

perturbations approach performs well in identifying the most influential observations

as significant. In both the river stage example and the air and water temperature ex-

ample, we sensibly identify certain observations as more influential than the rest, and

then the bootstrap method confirms their influence is significantly large, further illus-

trating that our method is appropriate to identify influential functional observations

in the concurrent model.
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