
Nonparametric Estimation of a Distribution Function

Under Biased Sampling and Multiplicative Censoring

– A Multivariate Model –

Micha Mandel

The Hebrew University of Jerusalem

Joint with Yosi Rinott, Yehuda Vardi and Cun-Hui Zhang



The Story

1 2 3 4 5 6subject

sampling

time

Estimation of (i) total lifetime distribution (ii) joint distribution
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Outline

• Biased sampling

• Multiplicative censoring

• Multivariate ordered event-time data

• The current story: questions, difficulties and a model

• Simulation

• Demonstration
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Biased Sampling

A parameter of interest is a distribution function F . Data are

realizations of X from the biased density

Fw(dx) = w(x)F (dx)/Ew(X)

If w = 0 on (a, b), then F is not identifiable on (a, b).

If w(x) > 0 whenever F (dx) > 0, then F is identifiable and

F (x) ∝
∫ x

0
[w(t)]−1Fw(dt)
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Biased Sampling - Example

Suppose that X ∼ F is right (randomly) censored by C ∼ G. If

we look only at the uncensored observations, they have the law

“P (X = x|uncensored)” = P (X = x, C > x)/P (X < C)

= F (dx)︸ ︷︷ ︸
′f(x)′

[1−G(x)]︸ ︷︷ ︸
w(x)

/ ∫
[1−G(t)]F (dt)

︸ ︷︷ ︸
Ew(X)

F̂ (x) ∝
∑

xi≤x

[1−G(xi)]
−1Fw

n (dxi)

This is an inverse probability of censoring weighted average
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Biased Sampling - The Important Point

If there are no identifiability problems, one can estimate the

biased distribution Fw using standard methods (empirical distri-

bution) and then estimate the unbiased law using

F̂ (dx) ∝ F̂w(dx)

w(x)
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Multiplicative Censoring (Vardi, 1989)

X ∼ F independent of U ∼ U(0,1). Multiplicative censored ob-

servations are realizations of Z = XU . This is a model of infor-

mative censoring.

fZ(z) =
∫ ∞
z

1

x
F (dx)
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Multiplicative Censoring - NPMLE

L(F ; z1, . . . , zn) =
n∏

i=1

∫ ∞
zi

1

x
F (dx)

- Estimation via the EM algorithm with complete data Xi.
- Values of z are support points.

- Suppose that z1 < z2 < · · · < zn and let pj be the estimated
mass at zj. An EM step:

pnew
j =

1

n

∑

k≤j

z−1
j pold

j∑
l≥k z−1

l pold
l

7



Multiplicative Censoring - Remarks

I) F is identifiable and the NPMLE is consistent even if all ob-

servations are censored.

II) Vardi presented the model in a more general situation where

there is an additional sample of uncensored observations.

III) Cross-sectional sampling designs result in size biased and

multiplicative censored lifetime data.
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Multivariate Ordered Event-Time Data

0 ≡ Y0 < Y1 < Y2 < · · · < Ym are ordered events such as phases

of a disease, ranks in the university, recurrent events, etc.

We also look at the duration at each phase Xj = Yj − Yj−1.

Censoring (a variable C) usually acts on the total lifetime Ym. A

typical observation has the form {Y1, . . . , Yk, C, I(Yk < C < Yk+1)}

Note that Xk+1 is censored by C−X1−· · ·−Xk, so the censoring

model is not ’random’ in the usual sense.
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Non-parametric Estimation of Ordered Event-Time
Models

- NPMLE problematic (not unique).

- Estimation of the laws of Y1 and Y2|Y1 (Visser, 1996*). Limited

to Y1 discrete.

- Inverse probability of censoring weighting (Lin, Sun and Ying,

1999; van der Laan, Hubbard and Robins, 2002; Chang and

Tzeng, 2006*). Estimate may assign negative mass.

* For left truncated data
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Multivariate Ordered Event-Time Data Under Biased
Sampling and Multiplicative Censoring

1 2 3 4 5 6subject

sampling

time

The process is size biased by Ym and multiplicative censored. We

hope to exploit all the previous techniques to do something here.
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Notations
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Y1, . . . , Ym - event times, X1, . . . , Xm - duration times, T0 - be-

ginning of the process, T1 - sampling time, c - Follow-up, Z -

observed total lifetime, K - last phase observed.
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Specific Questions

1. Do phase data improve estimation of the total lifetime CDF?

2. Estimation of the joint CDF of phases’ lengths.
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Estimation of the Joint CDF F

In the univariate multiplicative censoring model the NPMLE is

unique and it is consistent, even when there are no uncensored

observations.

In multivariate survival models the NPMLE is not unique and it

is not clear how to construct a consistent sequence of NPMLEs.

In multivariate multiplicative censoring problems....
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NPMLE of F

The NPMLE is unique, but inconsistent.

The idea: (1) Change the measure to the biased law

lik =
∫

z<yk+1<···<ym

F (dy1, . . . , dyk, dyk+1, . . . , dym)

E(Ym)

=
∫

z<yk+1<···<ym

1

ym
F ∗(dy1, . . . , dyk, dyk+1, . . . , dym)

(2) Show that the NPMLE assigns mass only to observed values

(i.e., yk+1 = · · · = ym = z).

(3) Claim that this give positive mass to P (Ym = Ym−1).
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A Model for F

Let y(k) = (y1, . . . , yk). We assume that

F (dy1, · · · , dym) = gθ(y
(m−1)|ym)dy1 · · · dym−1FYm(dym)

First term is the conditional density of event-times given total

lifetime, and it is known up to a finite dimensional parameter θ.

Second term is the unspecified CDF of total lifetime.
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The Schur Constant Model

Caramellino and Spizzichino 1996; Spizzichino 2001; Nelsen 2006

(X1, . . . , Xm)|Ym = ym ∼ Unif
{
(x1, . . . , xm) :

∑
i xi = ym, xi ≥ 0

}

F (dx1, · · · , dxm) =
(m− 1)!

(x1 + · · ·+ xm)m−1
dFYm(x1+· · ·+xm)dx1 · · · dxm−1
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The Schur Constant Model - Properties

• {(Zi, Ki)}ni=1 are the sufficient statistics (data are {(X1i, . . . , XKii, Zi, Ki)}n
i=1)

• K ∼ U{0,1, . . . , m− 1}

• The density of Z|K = k is equivalent to the density of UkY ∗m,

where Uk ∼ Beta(k + 1, m− k) → estimation by an EM algo-

rithm
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Simulation

Comparison of MSE at the quantiles 0.1,0.25,0.5,0.75,0.9 be-

tween the NPMLE with (red line) and without (blue line) in-

formation on phases. Rows top to bottom - different number

of phases, 2,3,4,5. Column left to right - different sample sizes,

50,100,200,500. Ym ∼ Gamma(6,1). Shown are averages of 100

replications.
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red − with phase data ; blue − w/o phase data
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Likelihood of General Model

pc(k, z, y1, . . . , yk;F, θ) =





∫∞
z gθ(k,y(k)|ym,z)F (dym)

(c+EYm) , z > 0, k < m

cgθ(y
(m−1)|z)F (dz)
(c+EYm) , z > 0, k = m

where gθ(k,y(k)|ym, z) is the density of (K,Y(K)) conditionally
on Ym and Z

g(k,y(k)|ym, z) ≡





I{yk ≤ z} ∫ · · · ∫
z<yk+1<···<ym

g(y(m−1)|ym)dyk+1 · · · dym−1 k < m− 1

I{yk ≤ z}g(y(m−1)|ym) k = m− 1
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Estimation when g is known

Let δi be the indicator of censoring (k < m), w(y) = y + c, and
Fw(dy) ∝ (y + c)F (dy), then the likelihood has the form

L(F ) ∝
n∏

i=1

{
Fw(dzi)

}δi n∏

i=1

{ ∫ ∞
zi

[g̃i(y)/w(y)]Fw(dy)

}1−δi

for a given support, an EM step is

Fw(new)(dt) =
1

n

n∑

i=1

{
δiI{zi = t}

+(1− δi)
[g̃i(t)/w(t)]I{zi ≤ t}

∫∞
zi

[g̃i(u)/w(u)]dFw(old)(u)
Fw(old)(dt)

}
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Estimation when θ is unknown

The likelihood has the form

L(θ) ∝
n∏

i=1

{
[g̃θi(zi)/w(zi)]F

w(dzi)

}δi
{ ∫ ∞

zi

[g̃θi(y)/w(y)]Fw(dy)

}1−δi

Assuming F is known, θ̂ can be found by a numerical search.

Iterating between ’known g’ and ’known F ’ yields the joint esti-

mate.

(After estimating F w we estimate F using the inverse transformation.)
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An Example: The Dirichlet Distribution

gα(y(m−1)|ym) = C(α)ym−1
m

n∏

i=1

(
yi − yi−1

ym

)αi−1

where C(α) = Γ(
∑

i αi)/
∏

i Γ(αi) and y0 = 0.

The conditional density is

g(k,y(k)|ym, z) = 1
yk
m

Γ(
∑m

i=1 αi)

Γ(
∑m

i=k+1 αi)
∏k

i=1 Γ(αi)

(
ym−yk

ym

)αk+1+···+αm−1

×∏k
i=1

(
yi−yi−1

ym

)αi−1

×
[
1− FBeta(αk+1,αk+2+···+αm)(

z−yk
ym−yk

)
]
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Summary and Topics for Further Research

We model the joint distribution by specifying a parametric model

to the conditional distribution of phases given total lifetime so

we can (i) easily deal with the bias, and (ii) improve estimation

of the total lifetime distribution.

We still need to work on (i) Unknown bias, (ii) Support of the

estimator, (iii) Properties of the estimator, and (iv) Random

number of phases m.
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