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Abstract

In this poster, I present some tools for the statistical analy-
sis of placenta shapes using a random sample of placenta
images. This is part of a project carried out by me at Los
Alamos National Labs over June-August 2007.

1. Introduction to Placenta shape

THe placenta is an organ developed within the uterus of
the mother during gestation that is connected to the em-

bryo by the umbilical cord and that is discharged shortly af-
ter birth. It serves as a structure through which nourishment
for the fetus is received from, and wastes are eliminated into,
the circulatory system of the mother. Figure 1 shows a pla-
centa specimen.

Figure 1: Placenta 1835 image

The statistical analysis of placenta shapes based on a ran-
dom sample of placentas is important in many areas. By
noting key features of the shape, like the position of the Um-
bilical Cord Insertion point (CdIns) relative to the outer and
inner perimeters, the thickness of the inter perimeter region,
shape of the perimeter boundaries (convexity, roundness etc)
and others, one may be able to predict features of the new
born, like its gender, birth weight, presence of some dis-
ease/abnormality etc.

2. Major Findings

IN my project, I compute the mean shape from a random
sample of placenta images. I find out that the mean is not

circular in shape, unlike what it seems to be (see Figure 6).

I perform a Principal Component Analysis on the tangent
space of the mean shape. I notice that perturbaion in shape
along different principal directions causes important changes
in placenta shape. For example, the CdIns point moves more
towards the boundary, the mean loses its convexity etc (see
Figure 7).

I study the relation between Foetal Placental Ratio (FPR)
and placenta shape by

• building a regression model explaining FPR as a function
of shape (see Table 2),

• estimating the posterior distribution of FPR given shape,
using Kernel based methods.

The regression model explains about 7% of variation in FPR.
The posterion distribution of FPR seems to depend a lot on
how close or far the shape is from the mean. For shapes
closest to the mean, the distribution is the most uniform,
while for the most extreme shapes, it is very heterogeneous
(see Table 3).

The analyses have been summarized in the subsequent sec-
tions.

3. Measuring Placenta shape

TO analyze placenta shapes, we need a mathematical no-
tion of shape. For that, I consider the Kendall’s planer

shape space Σk
2 . I pick a set of k points on a 2D placenta

image, not all points being the same. We refer to such a
set as a k-ad or a set of k landmarks. Then the shape of
a k-ad is its orbit or equivalence class under the euclidean
motions of translation, rotation and scaling. Σk

2 is the space
of all such orbits or shapes. Thus corresponding to each
sample placenta, we get a point on Σk

2 which represents the
placenta shape. Σk

2 has the structure of the complex pro-
jective space CP k−2: the space of all complex lines through
the origin in Ck−1, which is a Riemannian manifold of dimen-
sion 2k − 4. Figure 2 shows the chosen k-ad, k = 41 for a
particular placenta image.

Figure 2: All landmarks (blue) along with the selected 41
landmarks (red) on Placenta 2946

The preshape of a k-ad is what remains after removing the
effects of translation and scaling. It lies on the unit sphere
of dimension 2k − 3. Then the planer shape space consists
of all one dimensional orbits under rotation of the preshapes.
Figure 3a shows 41 landmarks on placentas 1546 and 1528.
Figure 3b shows their preshapes. Placenta 1528 preshape
has been rotated to bring it closest to the preshape of pla-
centa 1546.

(a) (b)

Figure 3: (a) 41 landmarks on placentas 1546 (blue) and
1528 (red), (b) Their preshapes

4. Mean on Manifolds

LEt (M,g) be a d dimensional connected complete Rie-
mannian manifold, g being the Riemannian metric tensor

on M . Let ρ be a distance metrizing the topology of M . For
a given probability measure Q on M , we define the Fréchet
function of Q as

F (p) =

∫
M

ρ2(p, x)Q(dx), p ∈ M. (1)

The set of all p for which F (p) is the minimum value of F on
M is called the Fréchet mean set of Q. If this set is a sin-
gleton, say {µF}, then µF is called the Fréchet mean of Q.
If X1, X2, . . . , Xn are independent and identically distributed
(iid) with common distribution Q, and Qn

.
= 1

n

∑n
j=1 δXj

is the
corresponding empirical distribution, then the Fréchet mean
set of Qn is called the sample Fréchet mean set, denoted
by CQn

. If this set is a singleton, say {µFn
}, then µFn

is called
the sample Fréchet mean.

The natural choice for the distance on M is ρ = dg, the
geodesic distance under g. Then the Fréchet mean (set) of
Q is called its intrinsic mean (set). If X1, X2, . . . , Xn are iid
observations from Q, then the sample Fréchet mean (set) is
called the sample intrinsic mean (set).

In case of the planer shape space Σk
2 , the projection of a

preshape onto its shape is a Riemannian submersion from
the unit sphere of dimension 2k − 3 onto Σk

2 . This makes Σk
2

a complete Reimannian manifold of dimension 2k − 4. From
a result due to Kendall, W.S.(1990), if Q is a probability dis-
tribution on Σk

2 with support in a geodesic ball of radius π
4 ,

say B(p, π
4), then it has an intrinsic mean, µI , in its support.

Also from a result due to Bhattacharya, A. and Bhattacharya,
R.(2007), the sample mean from an iid sample has asymp-
toticaly Normal distribution, if supp(Q) ⊂ B(µI , R), where R
is the unique solution of tan(x) = 2x, x ∈ (0, π

2).

Another notion of mean, which is much easier to compute
and exists under much broader conditions is called the ex-
trinsic mean on manifolds. To get that, we embed M iso-
metrically into some higher dimensional euclidean space via
some map, Φ : M → Rk. We choose the distance on M as:
ρ(x, y) = ‖Φ(x) − Φ(y)‖, where ‖.‖ denotes Euclidean norm
(‖u‖2 =

∑k
i=1 ui

2, u = (u1, u2, .., uk)′). Let Q be a probabil-
ity measure on M with finite Fréchet function. The Fréchet
mean (set) of Q with respect to the above distance, is called
the extrinsic mean(set) of Q. If Xj (j = 1, . . . , n) are iid
observations from Q, then the sample Fréchet mean(set) is
called the extrinsic sample mean(set).

In case of M = Σk
2 , we embed it into the space S(k, C) of all

k×k complex Hermitian matrices via the Veronese-Whitney
embedding Φ. S(k, C) is viewed as a (real) vector space of
dimension k2. This gives the extrinsic distance ρ on Σk

2
by that induced from this embedding. Let Q be a proba-
bility measure on Σk

2 , and let µ̃ denote the mean vector of
Q̃

.
= Q ◦ Φ−1, regarded as a probability measure on Ck2

(or,
R2k2

). Then it can be shown that the extrinsic mean set of Q
is the orbit under rotation of the space of unit eigenvectors
for the largest eigen value of µ̃. It follows that the extrinsic
mean µE, say, of Q is unique if and only if the eigenspace
for the largest eigenvalue of µ̃ is (complex) one dimensional,
and then µE is the shape of µ, µ( 6= 0) ∈ the eigenspace
of the largest eigenvalue of µ̃. Also it can be shown that in
that case, any measurable selection from the sample extrin-
sic mean set, is a strongly consistent estimator of µE, and
has asymptotic Normal distribution with mean µE.

Using these results, we can construct one and two sample
tests to draw inference on the population mean using the
sample estimate.

5. Placenta Mean Shapes

GIven a sample of 1101 placenta configurations, I com-
pute the extrinsic and intrinsic sample mean shapes.

These mean shapes can tell a lot about the shape distribution
of the random placenta sample.

Figure 4a,b show the preshapes of the extrinsic sample
means of 8 inner and outer landmarks respectively along
with the corresponding sample landmarks. The sample
preshapes have been rotated and scaled so as to mini-
mize their euclidean distances from the mean preshape.
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Figure 4: (a): 8 landmark outer perimeter mean shape
along with sample outer perimeters. (b): 8 landmark inner
perimeter mean shape along with sample inner perimeters.

The figures suggest that both the outer and inner mean
shapes are close to being circular, i.e. the 8-ad population
mean shapes should be regular octagons. To test that I per-
form one sample tests, and get p-values of order smaller than
10−16. The very small p-values force me to accept the alter-
native hypothesis that the sample shapes come from a popu-
lation whose mean shape is different from a regular octagon.
Figure 5 shows the plot of the 2 means along with octagons.
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Figure 5: (a): 8 landmark outer perimeter mean shape
along with a regular octagon. (b): 8 landmark inner perimeter
mean shape along with a regular octagon. Red represents
octagon edges, blue are the mean shape landmarks

Figure 6 shows the preshapes of the extrinsic and intrinsic
sample means for 41 landmarks. The geodesic distance be-
tween the two means is 0.0019. Hence they are almost indis-
tinguishable in the figure. Thus we will get very close results
whether we use extrinsic or intrinsic distances in our analy-
sis.
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Figure 6: Blue is the preshape of the extrinsic mean using
41 landmarks, red is the intrinsic mean preshape.

Having got the intrinsic sample mean shape, I project the
data onto the tangent space of the planer shape space Σk

2 ,
k = 41 at the mean using the inverse exponential map.
That gives 2k − 4 dimensional coordinates for each placenta
shape, known as normal coordinates. Each placenta shape
is a single point in the tangent space and therefore the 1101
sample placentas form a cloud of points in this high dimen-
sional space.

I perform a Principal Component Analysis (PCA) on the cloud
of points. Table 1 shows the percent variation and the cu-
mulative percent variation explained by the first 10 principal
components(PC). The first two principal components explain
about 71% of variation in shape and the first 7 components ex-
plain more than 90% of variation in shape. This suggests that
placenta shapes lie on a much smaller dimensional subman-
ifold of the shape space, which means that the landmarks
are highly correlated.

Table 1: Percent variation(V) and cumulative percent varia-
tion(CV) explained by first few PCs

PC 1 2 3 4 5 6 7 8 9 10
V 37.8 32.9 7.4 6.7 2.3 2.0 1.7 1.1 0.9 0.9
CV 37.8 70.7 78.1 84.8 87.1 89.0 90.7 91.8 92.8 93.6

What does the distribution of points along the principal di-
rections tell us about placenta shapes? How are placenta
shapes affected by movement along principal directions?
Figure 7 illustrate the change in the 41-ad intrinsic mean
shape caused by perturbations along the first principal direc-
tion. The perturbations are measured for times ±1σ and ±2σ
, where σ = π

18 is the standard deviation for the component.
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Figure 7: (a) Perturbation along Principal direction 1 by 1σ,
2σ from the mean shape. (b) Perturbation by −1σ, −2σ. Red
curve is the intrinsic mean of 41 landmarks, blue curves are
perturbation by ±1σ, green are ±2σ. σ = π

18

Figure 7 suggests that perturbation of the mean shape along
the first principal direction causes it to lose its convexity and
the CdIns point moves more towards the inner perimeter
edge.

6. Relation between placenta shape and FPR

THe objective of my project was to study placenta shapes
and use them to predict key features of the new born

baby, for example, its birth weight, sex, presence of some
disease etc. In this section, we study the relation between
placenta shape and Foetal Placental Ratio (FPR). FPR
is the ratio of the birth weight and the placental weight,
and hence can be used to get the birth weight of the new-
born. Figure 8 shows the scatter plot of geodesic dis-
tances of sample shapes from the intrinsic sample mean
against the corresponding FPR values. The plot sug-
gests correlation between FPR and placenta shape.
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Figure 8: FPR against placenta shape distance from mean
shape

Figure 9 shows the histogram of the distribution of geodesic
distances of sample shapes from the intrinsic mean. The
mean distance is 0.2540, and the standard deviation is
0.1201.
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Figure 9: Histogram of shape distance from mean shape

To see how the two are correlated, firstly I regress FPR, say
y, on the first few principal components of placenta shape,
say x = (x1, x2, . . . , xt). I try a quadratic model as follows:

y = a0 +

t∑
j=1

ajxj +

t∑
j=1

bjx
2
j +

∑ ∑
1≤i<j≤t

cijxixj + ε (2)

For the model (2), I estimate the coefficients, obtain 95% con-
fidence intervals for the coefficients assuming a Normal dis-
tribution and use the intervals to test which coefficients are
nonzero at level 5%. I also compute the proportion of vari-
ation in y explained by the model R2 and test whether the
model has any non zero coefficient other than a0, i.e. if there
is any interaction between y and x. Table 2 shows the re-
sults of my analysis. Column 1 shows the shape components
used in the model explaining FPR as a function of shape,
column 2 lists the estimates of the coefficients in that model
that are found to be significant at level 5%, column 3 is R2

and column 4 is the p-value for the F-test carried out to test
for interaction between y and x. If that p-value is less than
5%, I accept the hypothesis that the model has some non
zero coefficient other than a0 and hence is a good model.

Table 2: Regression of FPR(y) on shape(x)

x Significant Coefficients R2 P-value
x1 â0 = 7.7, â1 = −0.64 0.0069 0.02
(x1, x2) â0 = 7.75, â1 = −0.63 0.0089 0.0859
(x1, x2, x3, x4) â0 = 7.7 0.0172 0.1768
(x1, x2, x3, x4, ) â0 = 7.7, â5 = 2.6, 0.0338 0.1
x5, x6) â6 = −2.5

(x1, x2, x3, x4, â0 = 7.7, â5 = 3.24, â6 = −3.35, 0.0668 0.004
x5, x6, x7, x8) ĉ28 = 25.7, ĉ38 = 43.7, ĉ47 = −25.9,

ĉ48 = 33.5, ĉ68 = −65.1
(x5, x6) â0 = 7.7, â5 = 2.5 0.0119 0.02

Note that FPR seems to depend on the first principal com-
ponent (p-value for F-test = 0.02), however adding the sec-
ond component does not add new information instead just
increases the dimension thereby making the model ineffec-
tive (p-value for F-test = 0.0859). The table suggests that I
should use the model

y = a0 +

8∑
j=1

ajxj +

8∑
j=1

bjx
2
j +

∑ ∑
1≤i<j≤8

cijxixj + ε (3)

This model explains about 6.7% of variation in FPR and
the p-value is 0.004 which is fairly small. It is interest-
ing to note that the only non zero linear coefficients are
that of principal components 5 and 6 and there are no
non zero quadratic terms. This suggests that FPR de-
pends on shape linearly through components 5 and 6. Of
course there are non zero interaction terms like the coeffi-
cients of x2x8, x3x8, x4x7, x4x8 and x6x8. Figure 10 shows
FPR as a quadratic function of principal components 5
and 6. This model explains 1.19% of FPR variation.
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Figure 10: Scatter plot of FPR against x5, x6 along with best
quadratic model

Next I use nonparametric density estimation on manifolds,
to estimate the posterior distribution of FPR (y) given the
placenta shape. To do that, I divide the FPR values into 5
ordered classes, say, (−∞, a1], (a1, a2], (a2, a3], (a3, a4] and
(a4,∞) and then estimate the probability that considering the
placenta shape alone, the placenta will fall into a particular
FPR class.
To get the partition points dividing the FPR classes,
a1, . . . , ap, p = 4, I maximize the weighted sum of squared
distances between the means of the p + 1 groups, or equiva-
lently, minimize the weighted sum of within group variations.
The weights are proportional to the probability of the groups.
Mathematically, I choose a = (a1, . . . , ap), p = 4 so as to max-
imize

φ(a) =

p+1∑
i=1

P (ai−1, ai] (E(Y |ai−1 < Y ≤ ai)− E(Y ))2 (4)

with respect to a. In (4), P denotes the FPR probability
distribution and Y has distribution P . There a0 = −∞ and
ap+1 = ∞. Given an iid sample Y1, . . . , Yn with common dis-
tribution P , I get sample estimate for a, â = (â1, . . . , âp) by
replacing P in (4) by the sample empirical distribution, Pn.
For this specific sample,

â1 = 5.985, â2 = 7.245, â3 = 8.354, â4 = 9.71.

Figure 11 shows the histogram of the FPR values along with
the 5 classes. Red lines denote class boundary. Note that
there are other ways of classifying FPR values, for exam-
ple that can be done based on some biological considera-
tion, but for this case, I use purely statistical reasoning.
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Figure 11: Histogram of FPR values classified into 5 classes

If the prior probabilities of the p + 1 classes are π =
(π1, . . . , πp+1) (πj = P (aj−1, aj], j = 1, . . . , p + 1), then
their posterior probabilities given a shape x are $(x) =
($1(x), . . . , $p+1(x)) where

$j(x) =
f (x|Y ∈ (aj−1, aj])πj∑p+1
j=1 f (x|Y ∈ (aj−1, aj])πj

, j = 1, . . . , p + 1. (5)

Here f (x|Y ∈ (aj−1, aj]) represents the conditional shape
density for the class Y −1(aj−1, aj]. We estimate that by the
Kernel density estimate,

f̂σj(x) =
1

nj

∑
j:Yj∈(âj−1,âj]

e−
1
2

d2
g(Xj,x)

σ2∫
Σ41

2
e−

1
2

d2
g(y,x)

σ2 V (dy)

, j = 1, . . . , p + 1

(6)
for appropriately chosen σ. Here X1, . . . , Xn is the iid shape
sample and nj is the the number of shapes in the class
Cj = {Xi : Yi ∈ (âj−1, âj]}. Then we estimate the poste-
rior probability, $j(x) by

$̂j(x) =
f̂σj(x)π̂j∑p+1
j=1 f̂σj(x)π̂j

, j = 1, . . . , p + 1. (7)

Here π̂j is the proportion of Yj ’s in (âj−1, âj]. For our sample,
they are

π̂1 = 0.11, π̂2 = 0.30, π̂3 = 0.31, π̂4 = 0.21, π̂5 = 0.07.

Table 3 shows the posterior probabilities $̂j, j = 1, 2, . . . , 5
for a few shapes when I take σ = 0.07.

Table 3: Posterior probabilities ($̂) for a few placentas

Placenta Id Geodesic Distance $̂1 $̂2 $̂3 $̂4 $̂5
from mean shape

2946 0.0577 0.1015 0.2887 0.3239 0.2216 0.0642
2163 0.0596 0.0960 0.2983 0.3257 0.2166 0.0634
2919 0.0636 0.1061 0.2878 0.3202 0.2214 0.0645
2639 0.0637 0.0966 0.2974 0.3265 0.2139 0.0657
2830 0.0653 0.0869 0.3062 0.3125 0.2319 0.0625
3363 0.0678 0.0891 0.3020 0.3281 0.2189 0.0619
2561 0.0682 0.1059 0.2973 0.3259 0.2131 0.0578
3062 0.0746 0.0973 0.2989 0.3140 0.2116 0.0782
2645 0.0750 0.0966 0.3107 0.3203 0.2140 0.0584
2957 0.0750 0.0954 0.3036 0.3185 0.2088 0.0737
3303 0.2300 0.1469 0.2413 0.3114 0.1747 0.1257
2630 0.2306 0.1006 0.2788 0.3117 0.2288 0.0801
2620 0.2308 0.1268 0.4238 0.2330 0.1767 0.0397
2007 0.2309 0.0655 0.3128 0.2580 0.2772 0.0865
3396 0.2314 0.1476 0.2720 0.2931 0.1640 0.1233
2938 0.2318 0.4820 0.1625 0.1839 0.1035 0.0681
1730 0.2321 0.1166 0.3423 0.2932 0.1660 0.0818
2788 0.2321 0.0714 0.4759 0.1959 0.2054 0.0515
2648 0.2325 0.0302 0.1373 0.1312 0.6827 0.0186
2126 0.2326 0.1119 0.3083 0.2540 0.2491 0.0765
2732 0.5915 0.0001 0.9423 0.0462 0.0011 0.0103
1976 0.5929 0.0000 0.9993 0.0000 0.0006 0.0000
1762 0.6073 0.0000 1.0000 0.0000 0.0000 0.0000
1832 0.6105 0.0000 0.0155 0.0053 0.0019 0.9773
2776 0.6338 0.0148 0.9807 0.0004 0.0002 0.0040
1806 0.6410 0.0000 1.0000 0.0000 0.0000 0.0000
3244 0.6510 1.0000 0.0000 0.0000 0.0000 0.0000
2107 0.6525 0.0000 0.0014 0.0187 0.9798 0.0001
3061 0.6531 0.0000 0.0006 0.0035 0.0115 0.9844
1921 0.7419 0.0000 0.0000 0.0000 0.9999 0.0000

The first 10 placentas in the table are the ones with shapes
closest to the (intrinsic) mean shape. The next 10 are the
ones with shape distance in the middle, and the last 10 have
shapes furthest from the mean. Note how the FPR distri-
bution changes for the 3 shape groups. The first group pla-
centa shapes seem to have the most homogeneous condi-
tional FPR distribution, while for the last 10, the distribution
seems to be the least homogeneous. In the table, Placenta
1806 with shape distance 0.64 belongs to class 2 , i.e. the
one with FPR in (6.0, 7.2], with probability 1. That seems to
be consistent with Figure 8 because placenta 1806 has an
FPR value of 7.17. However placenta 3244 with shape dis-
tance 0.65 belongs to class 1, i.e. has FPR less than 6 with
probability 1 which does not seem to be consistent with Fig-
ure 8, because this placenta has a FPR of 10.07 (class 5).
This discrepency may be justified, if we note that our proba-
bility estimates depend on the entire shape and not just on
the shape distance from the mean.

Future work

WE can get many interesting results by analyzing pla-
centa shapes in more detail.

If I continue this project in future, I may carry out two sample
tests to discriminate between placenta shapes of opposite
sexes. Also I may carry out the regression of FPR on shape
separately for the two sex and may get very different results.
This regression can be done nonparametrically, rather than
assuming a quadratic model. In such a model, I estimate the
posterior mean of FPR given placenta shape using kernel
based methods.
Another important analysis will be to use placenta size and
shape information to predict new born features. A measure
of placenta size can be the placenta weight. Using size and
shape information together, we may get much stronger mod-
els explaining FPR.
To get more information on shape, I may consider the shape
of 3-D configurations from the whole placentas. That requires
statistical analysis tools on a different manifold, namely Σk

3 ,
and some methodologies have been developed in recent
times.
Finally, to measure placenta shape more accurately, I may
also include the position of the blood vessels, nerve endings
etc in the shape. These features can tell us a lot about the
new born.
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