Statistics on Placenta Shapes

Abhishek Bhattacharya

Department of Math, University of Arizona
abhishek@math. arizona. edu

Figure 1: Placenta 1835 image
The statisicical analysis of placenta shapes based on a random sample of placentas is imporant in many areas. By.
 inner perimeters, the thickness of the inter perimeter region,
 aorn, like its gender, birth weight, presence of some disease/abnormality etc.

2. Major Findings

$\int_{\text {N my project, I compute the mean shape from a random }}$ sample of placenta images. I find out that the mean is not
circular in shape, unlike what it seems to be (see Figure 6).
I perform a Principal Component Analysis on the tangent mean shape. I notice that perturbaion in shap in placenta shape. For example, the Cdlns point moves more towards the boundary, the mean loses its convexity etc (see Figure 7 .
study the relation between Foetal Placental Ratio (FPR) and placenta shape by
building a regression model explaining FPR as a function
of shape (see Table 2) Of shape (see table 2), using Kernel based methods
The regression model explains about 7% of variation in FPR The posterion distribution of FPR seems to depend a lot on how close or far the shape is from the mean. For shapes
closest to the mean, the distribution is the most unifiorm, while for the most extreme shapes, it is very heterogeneous (see Table 3).

The a
tions.
3. Measuring Placenta shape
$\mathrm{T}^{\circ} \mathrm{a}$ analyze placenta shapes, we need a mathematical noshape space Σ_{2}^{k}. I pick a set of k points on a $2 D$ placenta image, not all points being the same. We refer to such a set as a k-ad or a set of k landmarks. Then the shape of
a k-ad is its orbit or equivalence class under the euclidean $\mathrm{a} k$-ad is its orbit or equivalence class under the euclidean
motions of translation, rotation and scaling. Σ_{2}^{2} is the space of all such orbits or shapes. Thus corresponding to each
sample placenta we get sample placenta, we get a point on Σ_{2}^{k} which represents the
placenta shape. Σ_{2}^{k} has the structure of the compex proplacenta shape. Σ^{k} has the structure of the complex pro
jective space $\mathbb{C} P^{k-2}$: the space of all complex lines through jective space $\mathbb{C} P(\underline{2}-2$ the space of all complex lines through
the origin in \mathbb{C}^{k-1}, which is a Riemannian manifold of dimen-
sion sion $2 k-4$. Figure 2 shows the chosen k -ad, $k=41$ for a particular placenta image.

Figure 2: All landmarks (blue) along with the selected 41 andmarks (red) on Placenta 2946

The preshape of k -ad is what remains after removing the of dimension $2 k-3$. Then the planer shap the unit sphere of all one dimensional orbits under rotation of the preshapes Figure 3 a shows 41 landmarks on placentas 1546 and 1528 . Figure 3 b shows their preshapes. Placenta 1528 preshape has been rotated to bring it closest to the preshape of pla ta 546

(b)

Figure 3: (a) 41 landmarks on placentas 1546 (blue) and 1528 (red), (b) Their preshapes
4. Mean on Manifolds
$L_{\text {Et }(\mathrm{M}, \mathrm{g}) \text { be a } d \text { dimensional connected complete Rie- }}^{\text {mannian manifold, } g \text { being the Riemannian metric tensor }}$ on mannian manifold, g being the Riemannian metric tenso a given probability measure Q on M, we define the Fréchet function of Q as
$F(p)=\int_{M} \rho^{2}(p, x) Q(d x), p \in M$.

The set of all p or which $F(p)$ is the minimum value of F on
M is called the Frechet mean set of Q. If this set is a sinM is called the Frechet mean set of Q. If this set is a sin gleton, say $\left\{\mu_{F}\right\}$, then μ_{F} is called the Fréchet mean of Q
If $X_{1}, X_{2}, \ldots, X_{n}$ are independent and identically distributed (iid) with common distribution Q, and $Q_{n} \doteq \frac{1}{n} \sum_{j=1}^{n} \delta X_{j}$ is the corresponding empirical distribution, then the Fréchet mean set of Q_{n} is called the sample Frechet mean set, denoted
by C_{O}. It this set is a singleton, say $\left\{\mu_{F}\right\}$, then $\mu_{F_{F}}$ is called the sample Fréchet mean.
The natural choice for the distance on M is $\rho=d_{g}$, the ${ }_{Q}$ is called its intrinsic mean (set). If $X_{1}, X_{2}, \ldots, X_{n}$ are iid
ned observations from Q, then the sample

In case of the planer shape space Σ_{2}^{k}, the projection of
 a complete Reimannian manifold of dimension $2 k-4$. From a result due to Kendall, W.S.(1990), if Q is a probability dis say $B\left(p, \frac{\pi}{4}\right.$), then it has an intrinsic mean, μ_{I}, in its support. Also from a result due to Bhattacharya, A. and Bhattacharya R. (2007), the sample mean from an iid sample has asymp
toticaly Normal distribution, if supp (Q), toticaly Normal distribution, if $\operatorname{supp}(Q) \subset B\left(\mu_{I}, R\right)$, where
is the unique solution of $\tan (x)=2 x, x \in\left(0, \frac{\pi}{2}\right)$

Another notion of mean, which is much easier to compute and exists under much broader conditions is called the ex-
trinsic mean on manifolds. To get that, we embed M isotrinsic mean on manitolds. To get that, we embed M iso
metrically into some higher dimensional euclidean space via metrically into some higher dimensional eucidean space via
some map, $\Phi: M \rightarrow \mathbb{R}^{k}$. We choose the distance on M as $\rho(x, y)=\|\Phi(x)-\Phi(y)\|$, where $\|$.$\| denotes Euclidean norm$
$\left(\|u\|^{2}=\sum_{i=1}^{k} u_{i}^{2}, u=\left(u_{1}, u_{2}, . ., u_{k}\right)\right)$. Let Q be a probability measure on M with finite Fréchet function. The Fréche the extrinsic mean(set) of Q if $X(()=1, \ldots, n)$ are ii observations from Q, then the sample Fréchet mean(set) is
called the extrinsic sample mean(set). called the extrinsic sample mean(set).
In case of $M=\Sigma_{2}^{k}$, we embed it into the space $S(k, \mathbb{C})$ of al $k \times k$ complex Hermitian matrices via the Veronese-Whitney
embedding $\Phi . S(k, \mathbb{C}$ is viewed as mbension Φ. This gives the extrinsic distance ρ on Σ
dimen by that induced from this embedding. Let Q be a proba
bility measure on Σ^{k} and .et \tilde{l} denole $\tilde{Q} \doteq Q \circ \Phi^{-1}$, regarded as a probability measure on $\mathbb{C}^{k^{2}}$ (or, $\left.{ }^{2} \mathbb{R}^{2 k^{2}}\right)$. Then it can be shown that the extrinsic mean set of Q is the orbit under rotation of the space of unit eigenvectors mean μ_{E}, say, of Q is unique if and only if the eigenspac for the largest eigenvalue of $\tilde{\mu}$ is (complex) one dimensional, and then μH_{E} is the shape of $\mu, \mu(\neq 0) \in$ the eigenspace
of the larges eigenvalue of $\bar{\mu}$ Also it can esher of the largest eigenvalue of μ. Asco
that case, any measurable selection from the sample extrinsic mean set, is a strongly consistent estimator of μ_{E}, and has asymptotic Normal distribution with mean μ_{E}.
Using these results, we can construct one and two sample
tests to draw inference on the population mean using the tests
sample estimate.
5. Placenta Mean Shape
$G_{\text {pute }}^{\text {iven a sample of } 1101 \text { placenta configurations, I com- }}$ pute the extrinsic and intrinsic sample mean shapes of the random placenta sample.
Figure $4 \mathrm{a}, \mathrm{b}$ show the preshapes of the extrinsic sample means of 8 inner and outer landmarks respectively along
with the corresponding sample landmarks. The sample with the corresponding sample landmarks. The sampl preshapes have been rotated and scaled so as to mini-

(a)
(b)

Figure 4: (a): 8 landmark outer perimeter mean shape along with sample outer perimeters. (b): 8 landmark inner
perimeter mean shape along with sample inner perimeters.

The figures suggest that both the outer and inner mean shapes are close to being circular, i.e. the 8 -ad population mean shapes should be regular octagons. To test that I per form one sample tests, and get p-values of order smaller than
10^{-16}. The very small p p-values force me to accept the alternative hypothesis that the sample shapes come from a popu lation whose mean shape is different from a regular octagon.
Figure 5 shows the plot of the 2 means along with octagons.

(a)
(b)

Figure 5: (a): 8 landmark outer perimeter mean shape along with a regular octagon. (b): 8 landmark inner perimeter mean shape along with a regular octagon. Red rem
octagon edges, blue are the mean shape landmarks

Figure 6 shows the preshapes of the extrinsic and intrinsic sample means for 41 landmarks. The geodesic distance be tween the two means is 0.0019. Hence they are almost indis
tinguishable in the figure. Thus we will get very close results whether we use extrinsic or intrinsic distances in our analy-
igure 6: Bue is the preshape of the extrinsic mean using

Having got the intrinsic sample mean shape, I project the data onto the tangent space of the planer shape space Σ_{2}^{k}, $k=41$ at the mean using the inverse exponential map.
That gives $2 k-4$ dimensional coordinates for each placenta shape, known as normal coordinates. Each placenta shape a single point in the tangent space and therefore the 110 sample place
sional space.
perform a Principal Component Analysis (PCA) on the cloud of points. Table 1 shows the percent variation and the cumulative percent variation explained by the first 10 principal amout 71% of variation in shape and the first 7 components explain more than 90% of variation in shape. This suggests that placenta shapes lie on a much smaller dimensional submanold of the shape space, which means that the landmarks are highly correlated.
able 1: Percent variation (V) and

ion $(C V)$ explained by first few $P C s$ | $\mathbf{P C}$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| V | 37.8 | 32.9 | 7.4 | 6.7 | 2.3 | 2.0 | 1.7 | 1.1 | 0.9 | 0.9 | CV 37.8 70.7 78.1 84.8 87.1 89.0 90.7 91.8 92.8 93.6

What does the distribution of points along the principal directions tell us about placenta shapes? How are placenta
shapes affected by movement along principal directions? shapes afiected by movement along principal directions?
Figure 7 illustrate the change in the $41-$-ad intrinsic mean shape caused by perturbations along the first principal direcion. The perturbations are measured for times $\pm 1 \sigma$ and $\pm 2 \sigma$
where $\sigma=\frac{\pi}{1}$ is the standard deviation for the component.

(a) (b)

Figure 7: (a) Perturbation along Principal direction 1 by 1σ 2σ rrom the mean shape. (b) Perturbation by -1σ, -2σ. Red
 Figure 7 suggests that perturbation of the mean shape along
the first principal direction causes it to lose its convexity and he Cdlns point moves more towards the inner perimeter edge.
6. Relation between placenta shape and FPR
$T^{\text {He objective of my project was to study placenta shapes }}$ and use them to predict key features of the new born baby, for example, its birth weight, sex, presence of some disease etc. In this section, we study the relation between
placenta shape and Foetal Placental Ratio (FPR). FPR placenta shape and Foetal Placental Ratio (FPR). FPR
is the ratio of the birth weight and the placental weight, and hence can be used to get the birth weight of the new-
born. Figure 8 shows the scatter plot of geodesic disborn. Figure 8 shows the scatter plot of geodesic dis-
ances of sample shapes from the intrinsic sample mean tances of sampole shapes from the intrinsic sample mean
gagainst the corresponding FPR values. The plot suggests correlation between FPR and placenta shape.

Figure
shape

Figure 9 shows the histogram of the distribution of geodesic istances of sample shapes from the intrinsic mean. The
mean distance is 0.2540 , and the standard deviation is mean
0.1201

Figure 9: Histogram of shape distance from mean shape

To see how the two are correlated, firstly I regress FPR, say y, on the first few principal components of placenta shape,
say $\mathrm{x}=\left(x_{1}, x_{2}, \ldots, x_{t}\right)$. t try a quadratic model as follows:

$$
y=a_{0}+\sum_{j=1}^{t} a_{j} x_{j}+\sum_{j=1}^{t} b_{j} x_{j}^{2}+\sum_{1 \leq i<j \leq t} \sum_{i j} x_{i} x_{j}+\epsilon
$$

For the model (2), I estimate the coefficients, obtain 95% contribution and use the intervals to test which coefficients are nonzero at level 5%. I also compute the proportion of variation in y explained by the model R^{2} and test whether the is any interaction between y and x . Table 2 shows the results of my analysis. Column 1 shows the shape components used in the model explaining FPR as a function of shape, column 2 lists the estimates of the coeficicents in that model
that are found to be significant at level 5%, column 3 is R^{2} and column 4 is the p-value for the F-test carried out to test for interaction between y and x. If that p-value is less than zero coeeficient other than a_{0} and hence is a good model.

Table 2: Regression of FPR(y) on shape (\mathbf{x})

x	Significant Coefficients	R^{2}	P-value
x_{1}	$\hat{a}_{0}=7.7, \hat{a}_{1}=-0.64$	0.0069	0.02
${ }_{\left(x_{1}, x_{2}\right)}$	$\hat{a}_{0}=7.75, \hat{a}_{1}=-0.63$	0.0089	0.0859
$\left(x_{1}, x_{2}, x^{2}\right.$	$\hat{a}_{0}=7.7$	0.0172	0.1768
, x_{2}, x_{3}, x_{4},	$\hat{a}_{0}=7.7, a_{5}=2.6$,	0.0338	0.1
	$\hat{a}_{6}=$		
$\begin{aligned} & \left(x_{1}, x_{2}, x_{3}, x_{4},\right. \\ & \left.x_{5}, x_{6}, x_{7}, x_{8}\right) \end{aligned}$	$\begin{aligned} & \hat{a}_{0}=7.7, \hat{a}_{5}=3.24, \hat{a}_{6}=3.35, \\ & \hat{c}_{28}=25.7,{ }^{2},{ }_{20}=43.7, \hat{c}_{47}=-25.9, \end{aligned}$	0.0668	0.00

Note that FPR seems to depend on the first principal com ond component does not add new information instead jus increases the dimension thereby making the model ineffective p p-value for F -test $=0.0859$). The table suggests that I
should use the model

$$
y=a_{0}+\sum_{j=1}^{8} a_{j} x_{j}+\sum_{j=1}^{8} b_{j} x_{j}^{2}+\sum_{1 \leq i<j \leq 8} c_{i j} x_{i} x_{j}+\epsilon
$$

This model explains about 6.7% of variation in FPR and
the p-value is 0.004 which is fairly small. It is interestthe p-value is 0.004 which is fairly small. It is interest-
ing to note that the only non zero linear coefficients are that of principal components 5 and 6 and there are no non zero quadratic terms. This suggests that FPR de-
pends pends on shape linearly through components 5 and 6 . Of
course there are non zero interaction terms like the coefficourse there are non zero interaction erms ile the coefli-
cients of $x_{2} x_{8}, x_{3} x_{8}, x_{4} x_{7}, x_{4} x_{8}$ and $x_{6} x_{8}$. Figure 10 shows FPR as a quadratic function of principal components
and 6 . This model explains 1.19% of FPR variation.

Figure 10: Scatter plot of FPR against x_{5}, x_{6} along with best quadratic model

Next I use nonparametric density estimation on manifolds, to estimate the posterior distribution of FPR (y) given the placenta shape. To do that ordered classes, say, $\left(a_{4}, \infty\right)$ and then estimate the probability that considering the placenta shape alone, the placenta will fall into a particular
FPR class. FPR class.
To get the
To get ine partition points dividing the FPR classes, $a_{1}, \ldots, a_{p}, p=4,1$ maximize the weighted sum of squared
distances betwen the lently, minimize the weighted sum of within groups, or equiva The weights are proportional to the probability of the groups. Mathematically, I choose $\mathrm{a}=\left(a_{1}, \ldots, a_{p}\right), p=4$ so as to max-
imize -
$\phi(\mathbf{a})=\sum_{i=1}^{p+1} P\left(a_{i-1}, a_{i}\right]\left(\mathrm{E}\left(Y \mid a_{i-1}<Y \leq a_{i}\right)-\mathrm{E}(Y)\right)^{2} \quad$ (4) with respect to a. In (4), P denotes the FPR probability
distribution and Y has distribution P. There $a_{0}=-\infty$ and and
$a_{p+1}=\infty$. Given an iid sample Y_{1}, \ldots, Y_{n} with common dis-
tribution P, get sampe estimate for 2 ,
 repiaing P in
For this specific sample,

$$
\hat{a}_{1}=5.985, \hat{a}_{2}=7.245, \hat{a}_{3}=8.354, \hat{a}_{4}=9.71 .
$$

Figure 11 shows the histogram of the FPR values along with the 5 classes. Red lines denote class boundary. Note that there are other ways of classifying FPR values, for exam ple that can be done based on some biological considera

$$
5
$$

Figure 11: Histogram of FPR values classified into 5 classes
If the prior probabilities of the $p+1$ classes are $\pi=$
$\left(\pi_{1}, \ldots, \pi_{1}\right)$ $\left(\pi_{1}, \ldots, \pi_{p+1}\right)\left(\pi_{j}=P\left(a_{j-1}, a_{j}\right], j=1, \ldots, p+1\right)$, then
their 0 osterior probabilities given a shape x are $\overline{\mathrm{w}}(\mathrm{x})=$ $\left(\bar{\omega}_{1}(\mathbf{x}), \ldots, \omega_{p+1}(\mathbf{x})\right)$ where
$\varpi_{j}(\mathbf{x})=\frac{f\left(\mathbf{x} \mid Y \in\left(a_{j-1}, a_{j}\right)\right) \pi_{j}}{\sum_{j=1}^{p+1} f\left(\mathbf{x} \mid Y \in\left(a_{j-1}, a_{j}\right)\right) \pi_{j}}, j=1, \ldots, p+1 . \quad$ (5)

Here $f\left(\mathbf{x} \mid Y \in\left(a_{j-1}, a_{j}\right)\right.$ represents the conditional shape density for the class $Y^{-1}\left(a_{j-1}, a_{j}\right]$. We estimate that by the
Kernel density estimate, eneldens

for appropriately chosen σ. Here X_{1}, \ldots, X_{n} is the iid shape
sample and n is the the number of shapes in the sample and n_{j} is the the number of shapes in the class
$C_{j}=\left\{X_{i}, Y_{i} \in\left(\hat{a}_{j}, 1, \hat{a}_{j}\right]\right\}$. Then we estimate the poste-
rior probabilty, $w_{j}(\mathbf{x})$ by $\hat{\omega}_{j}(\mathbf{x})=\frac{\hat{f}_{j}(\mathbf{x}) \hat{\pi}_{j}}{\sum_{p+1}^{p+1} \hat{f}_{j}(\mathbf{x}) \psi_{j}}$ (7)

Here $\hat{\lambda}_{j}$ is the proportion of Y_{j}^{\prime} s in $\left(\hat{a}_{j-1}, \hat{a}_{j}\right)$. For our sample, Here π_{j} is
they are
$\hat{\pi}_{1}=0.11, \hat{\pi}_{2}=0.30, \hat{\pi}_{3}=0.31, \hat{\pi}_{4}=0.21, \hat{\pi}_{5}=0.07$.
Table 3 shows the posterior probabilities $\hat{\mathrm{m}}_{j}, j=1,2, \ldots, 5$
for a few shapes when take $\sigma=0.07$ for a few shapes when Itake $\sigma=0.07$.
Table 3: Posterior probabilities ($\hat{\omega}$) for a few placentas

Placenta 1	Geodesic Distance	$\stackrel{\text { m }}{1}^{1}$		¢ $_{\text {m }}$	$\stackrel{\omega}{4} 4^{4}$	$\stackrel{\text { mis }}{5}^{\text {a }}$
${ }_{2163}^{2946}$	0.0579	0.105	0.2883	.	,216	
2919	${ }_{0.0636}$	0.106	0.2878	0.320	0.22	0.0645
2639	0.0637	0.0966	0.2974	0.3265		
2830	${ }^{0.0653}$	0.086	0.3062	0.3125	0.23	
3363	0.0678	0.089	0.3020	0.3281	0.2189	
2561	${ }^{0.0682}$	0.1059	0.2973	0.3259	0.2131	
3062	${ }^{0.0776}$	0.0973	0.2989			
${ }^{2645}$	0.0750	0.0956	-	.2203	㾝	
			-	.		
353	0.2300	0.1469	0.2413	0.317	0.1	
260	02308	d298			0.1278	
2007	02309	0065	03128	0580	12772	
${ }^{3396}$	${ }_{0} 0.2314$	0.1476	0.2720	02931	0.1640	
2938	${ }_{0.2318}$	0.4820	0.1625	0.1839	0.1035	0.0681
1730	${ }^{0.2321}$		0.3423	0.2932	0.1660	
2788	${ }^{0.2321}$	0.0714	0.4759	0.1959	0.2054	
2648	${ }^{0.2325}$	0.0302	0.1373	0.131	0.6827	
			0.3083	0.2540	0	
2732	0.599	0.000	0.9423	0.0462	0.0	
	.9529		0.90	0.0000		
-	0.073	0.0000	1.0000		0.	
${ }^{2376}$. 0.61038	0.0000	0.01557	0.0053	0.00	
1896	. 6410	O.0140	O.9807	0080	000	
3244	. 6510	-0000	T0000		.	
2107	${ }_{0}^{0.6525}$	0.0000	0.0014	87	.	
3061	${ }_{0.6531}$	0000	0006	5	-9	
1921	0.7419	0000	O000	0.0000	-999	0000

The first 10 placentas in the table are the ones with shapes
closest to the (intrinsic) mean shape. The next 10 are the closest to the (intrinsic) mean shape. The next 10 are the
ones with shape distance in the middle, and the last 10 have ones with shape distance in the middele, and the last
shapes furthest from the mean. Note how the FPR distri-
bution changes for the 3 shape groups. The first group placenta shapes seem to have the most homogeneous conditional FPR distribution, while for the last 10 , the distribution
seems to be the least homogeneous, In the table, liacenta seems to be the least homogeneous. In the table, Placenta
1806 with one with FRP in (6.0, 7.2], with probability 1 . That seems to
be consistent with Figues 8 because be consistent with Figure 8 because placenta 1806 has an
FPR value of 7.17 . However placenta 3244 with shape disFPR value of 7.17 . However placenta 3244 with shape dis-
tance 0.65 belongs to class 1 , i.e. has FPR less than 6 with probability 1 which does not seem to be consistent with Fig-
ure 8 , because this placenta has a FPR of 10.07 (class 5). ure 8, because this placenta has a FPR of 10.07 (class 5).
This discrepency may be justified, if we note that our proba-
bility estimates depend on the entire shape and not just on This discrepency may be justified, if we note that our proba-
bility estimates depend on the entire shape and not just on
the shape distance from the mean the shape distance from the mean.

$W_{\text {centa shapes in more detail }}^{\mathrm{E} \text { can }}$
If I continue this project in future, I may carry out two sample
tests to discriminate between placenta tests to discriminate between placenta shapes of opposite
sexes. Also I may carry out the regression of FPR on shape separately for the two sex and may get very different results. This regression can be done nonparametrically, rather than assuming a quadratic model. In such a model, I estimate the based methods.
Another important analysis will be to use placenta size and
shape information to predict new born features A measure shape information to predict new born features. A measure
of placenta size can be the placenta weight. Using size and shape information together, we may get much stronger models explaining FPR.
To get more information on shape, I may consider the shape
of 3-D configurations from the whole placentas That requires of 3 -D configurations from the whole placentas. That requires
statistical analysis tools on a different manifold, namely Σ_{3}^{h}, and some methodologies have been developed in recent times.
Finally,
Inally, to measure placenta shape more accurately, I may etc in the shape. These features can tell us a lot about the

