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Abstract

To identify peptides, we present a Bayesian approach, which uses prior in-
formation about the average relative abundances of bond cleavages and the prior
probability of any particular amino acid sequence. The proposed likelihood func-
tion is composed of two overall distance measures, which measure how close an
observed spectrum is to a theoretical scan for a peptide. A Markov chain Monte
Carlo (MCMC) algorithm is employed to simulate candidate choices from the pos-
terior distribution of the peptide sequence. The true peptide is estimated as the
peptide with the largest posterior density.

KEYWORDS: Bayesian methods, Markov chain Monte Carlo, Protein identifica-
tion, Tandem mass spectrometry

1 Introduction

Proteomics is a vast analysis of proteins, particularly their structure, function, abun-
dances, and variations and modifications. In proteomics, scientists begin with the
protein and work backwards to determine the gene that is responsible for its produc-
tion. Proteins are constantly changing and vary with health or disease while a genome
remains relatively static. Issues arise in protein identification when an organism’s
genome has not been sequenced, more specifically in microbial samples. Only 1%-
10% of microbes found in the ecosystem can be cultured. There are countless other
microbes that have not been identified and, of the microbes that have been cultured,
some will show evidence of post translational modifications. These post translational
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modifications cannot be calculated from the genome (Rose et al., 2010). There has
been little progress in the area of environmental proteomics and being able to correctly
identify these microbes via protein identification is of great importance especially in
ecological samples such as soil and water samples (Schulze, 2004). In clinical pro-
teomics, scientists commonly search for proteins or groups of proteins to help diagnose
types of cancers, diseases, or viruses with the goal of early diagnosis. These proteins
or groups of proteins can be biomarkers for a disease; see Wulfkuhle et al. (2003), Dia-
mandis (2004), and Visintin et al. (2008). Correctly identifying proteins will also aid
in the advance of clinical proteomics.

Current methods for identification of proteins are lacking. With a limited number of
known genome sequences, noisy data, and incomplete ion sequences, the accuracy of
protein identification is limited. In this paper, we describe a Bayesian approach, which
aims to improve the identification of proteins.

We employ a Bayesian stochastic search approach to protein identification. We use the
prior knowledge of abundances of bond cleavages and the probability of any particular
amino acid sequence. Our likelihood function combines two measures of distance that
measure the closeness of each observedm/z value to anm/z value in a theoretical scan
of a peptide. An MCMC scheme is utilized to simulate candidate peptides from the
posterior distribution, and the peptide with the largest posterior probability is estimated
as the true protein. Our approach also allows one to rank the top candidate peptides by
their estimated posterior probabilities.

The data come from the Pacific Northwest National Laboratory (PNNL) and can be
publicly accessed online for download (Ansong et al., 2011) and is produced by a LTQ
Orbitrap yielding doubly charged tryptic peptides. For each peptide, there is a set of
m/z values with corresponding intensity values.

1.1 Mass Spectrometry

There are several methods for obtaining the proteomic profile of a sample. With techno-
logical advances, mass spectrometry methods are now more commonly used. Tandem
mass spectrometry (MS/MS) is a two-stage mass spectrometry process that allows
examination of individual ion fragmentation from a group of ions. Tandem mass spec-
trometry is used with an assortment of instruments and scan modes.

Peaks can be identified by plotting the intensities versus a horizontal index, which in
proteomic analysis is the particle’s mass-to-charge ratio (m/z). These peaks charac-
terize the peptide in the sample. The final data spectrum is the line plot of pairs of
intensities and (m/z) values (Coombes et al., 2007). Figure 1 pictorially shows the
spectrum for a given spectrum by plotting the m/z values versus their corresponding
intensity values. [[Figure 1 goes here]]
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1.2 Protein Identification Methods

Presently, there are few methods for identifying protein sequences. A popular approach
searches through a database of peptides and then matches the closest peptide using the
observed spectrum. Some common algorithms for database searches are MASCOT and
SEQUEST. Another approach is de novo sequencing, in which the peptide sequence is
determined by recreating a spectrum using the observed spectrum. PepNovo and Peaks
are frequently used de novo algorithms. A more recent approach uses a mixture of the
other two. In this approach, the de novo method recaptures short peptide sequences
and then the peptide sequences are used to refine the search in the database approach
(Frank and Pevzner, 2005).

A major concern of the database search and hybrid method is that they rely on the use
of a database of peptides. These methods cannot correctly identify the protein if it is
not in the database. Some limitations of both the database search and de novo peptide
sequencing are lack of accuracy and certainty of the chosen peptides, chemical noise,
overly complex fragments, and incomplete b and y ion sequences (Lubec and Afjehi-
Sadat, 2007). We introduce a Bayesian model that will aim to identify the correct
peptide without depending on the database of peptides, but instead using more generic
prior information.

2 Basic Concepts of Fragmentation

The basic idea of any protein identification method is to match an observed spectrum to
a theoretical spectrum of the proposed peptide. It is extremely difficult to identify intact
proteins and so the proteins are broken into short peptides and examined separately. A
peptide is a sequence of amino acids, each of which is represented by one of 20 letters.
The theoretical spectrum of a peptide is a set of peaks with the location of each peak
at the m/z value of each ion type. There are spikes at each peak location and zeros
everywhere else. The peptide is broken into pairs of ions, most commonly b and y ions.
It is the intensities of these ions that are detected in the mass spectrometer. Figure 2
shows the theoretical spectrum for the peptide QVMELLQ using just the b and y
ions. [[Figure 2 goes here]]

To find the theoretical spectrum, one must first split the true peptide sequence into
all possible ion combinations. In practice, we use only the b and y ions, although
there are several other less common ions. We classify an ion as a b ion if the charge
is maintained on the N-terminus, where the N-terminus refers to the beginning of a
peptide that is terminated by an amino acid with a free amine group. In order for an ion
to be detected, the ion must have a charge of at least one. The y ion is the complement
of the b ion. Thus, it is the end of the peptide where the charge is maintained on the
C-terminus, where the C-terminus refers to the end of a peptide that is terminated by a
free carboxyl group (−COOH) (IUBMB, 1992, p. 48).

After the b and y ions are found, the mass of each ion is determined. The mass for
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any given ion is found by
∑k
i=1m(pi) + δ` where k is the number of amino acids in

the ion sequence, pi is the amino acid in the i th position, m(pi) is the mass of the
amino acid in the i th position, ` denotes the type of ion such that ` ∈ {b, y}, and δ`
is the offset for ion type `. In tandem mass spectrometry, the peptide fragmentation is
determined by offsets that correspond to ion types. That is, the offsets match up to the
peaks in a given spectrum, and thus denote the different ion types created in the given
mass spectrometer (Dančı́k et al., 1999). Since different types of mass spectrometers
yield different spectra, Dančı́k et al. (1999) developed an offset frequency function that
does not depend on instrument type and allows one to define the ion types produced by
a given mass spectrometer. The offset value for a b ion is 0.85 Da and 18.85 Da for a y
ion.

As an example, consider the peptide QVMELLQ. There are six b ions and six y ions.
The first b ion, Q, has a mass of 128.059 + 0.85 = 128.909 Da, and the first y ion,
Q, has a mass of 128.059 + 18.85 = 146.909 Da. Continuing with the splitting of the
peptide, one obtains the following additional b ions: QV , QVM , QVME, QVMEL,
and QVMELL with masses 227.977, 359.017, 488.060, 601.144, and 714.228 Dal-
tons, respectively. Similarly, we obtain the following additional y ions: LQ, LLQ,
ELLQ, MELLQ, and VMELLQ with masses 259.993, 373.077, 502.120, 633.160,
and 732.228 Daltons, respectively. Therefore, the theoretical spectrum for the pep-
tide QVMELLQ is the set of masses: 128.909, 227.977, 359.017, 488.060, 601.144,
714.2284, 732.228, 633.160, 502.120, 373.077, 259.993, and 146.909 Daltons. These
positions are shown on the (m/z) axis in Figure 2.

It is important to find the total mass of the peptide because a mass spectrometer will
also measure the total mass of the peptide being analyzed. We can use this weight
restriction to eliminate peptides that do not have a total mass within a tolerance of the
measured mass. The total mass of the peptide is found by

∑K
i=1m(pi)+mass ofH2O,

where the mass of the water molecule is 18.010565 Da. HereK is the number of amino
acids in the peptide sequence. For data that are doubly charged, the total mass becomes∑K
i=1m(pi) + mass of H2O + H because of the second proton that is acquired. The

mass of one hydrogen molecule is 1.00794 Da. Thus the total mass for the peptide
QVMELLQ is 860.456 Da assuming the data are doubly charged.

3 A Bayesian Model

We propose a Bayesian model with the goal of identifying the true peptide based on
the observed spectrum. To identify this true peptide, a Markov chain Monte Carlo
(MCMC) algorithm is used to simulate candidate peptide sequences from the posterior
distribution. The motivation will be discussed in Section 3.2.
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3.1 Pre-Processing

Mass spectrometry data are quite noisy and the observed spectrum first must be thresh-
olded. Peaks with intensity values below a threshold level will be ignored, and our
attention will be focused on the m/z values having intensities above the threshold. A
distinct threshold value for each integerm/z value, denoted by T = (T1, T2, . . . , Tq?),
is computed. Here q? denotes the total number of m/z values. The mass spectrom-
eter does not always capture all peaks at the beginning and the end of the spectrum.
Thus using only a constant threshold could remove peaks that are truly signal (not
noise) peaks. Therefore, we threshold using a weighted average of constant and mov-
ing thresholds. The data used in our method consist of the retained intensity values and
their corresponding m/z values.

3.2 Likelihood

For our Bayesian model, we first specify a likelihood function, which gives a measure
of how well the observed spectrum and theoretical spectrum agree. If a candidate pep-
tide’s theoretical spectrum does not align well with the observed spectrum, an overall
goodness of fit measure will penalize the candidate peptide. Even after thresholding,
we still expect there to be noise peaks in the data set and therefore, we incorporate
another overall goodness of fit measure that will penalize a candidate peptide having
too many noise peaks near the theoretical spectrum. We do know that the mass spec-
trometer does not always capture every signal peak. Hence, we include an indicator
function in our likelihood function that signifies the presence or absence of a peak.

We propose a likelihood function of the form

L(X|θ,η, κ1, κ2) ∝ κs1 exp(−κ1S1)κt−s2 exp(−κ2S2) (1)

where our parameter vector θ = (τ b1 , . . . , τ
b
p , λ

b
1, . . . , λ

b
p, τ

y
1 , . . . , τ

y
p , λ

y
1, . . . , λ

y
p), X

contains the observed pairs ofm/z values and intensities for a particular spectrum, and
η represents the string of amino acids for the candidate peptide. The other parameters
are explained below. Let xj be the set of observed peaks in the data which are above
the threshold T, j = 1, . . . , n. We write N to denote the set of observed noise peaks,
where for label j ∈ N we have |xj − τki | ≥ δ for all i, k, or there exists a j′ 6= j such
that |x′j − τki | < |xj − τki | < δ for some i, k, where i = 1, . . . , p and k ∈ {b, y}.
We take δ = 3 Daltons. The goodness of fit measures of the candidate spectrum to the
observed spectrum are

S1 =

p∑
i=1

λbi min
j
d(xj , τ

b
i ) + λyi min

j
d(xj , τ

y
i ) (2)

S2 =
∑
j∈N

min
i,k
|xj − τki | (3)

and d(xj , τ
k
i ) = min{|xj − τki |, δ}.
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As mentioned previously, the mass spectrometer may not capture every peak in the
theoretical spectrum. If a peak is missing, the m/z value for the next closest peak
may be far from the candidate peak causing the value of S1 to increase. Therefore, we
incorporate a penalty term to alleviate the effects of the missing peak. Also, τ bi and τyi
are the m/z values for the b and y ion of the candidate peptide and κ1 and κ2 represent
weights where s is the number of b and y ions combined. Here λbi and λyi ∈ {0, 1} are
indicator functions that signify whether the i th b or y ion has a corresponding observed
peak, where i = 1, . . . , p. Here, λbi = 1 denotes the presence and λbi = 0 denotes the
absence of a b ion at position i. Similarly, λyi = 1 denotes the presence and λyi = 0
denotes the absence of a y ion at position i. If λyi = 1 and S1 measures the sum
of minimum absolute distances between the closest observed m/z above a threshold
and each m/z peak value of the candidate peak value, while S2 measures the sum
of minimum absolute distances between each observed m/z value above a threshold
and the closest candidate peak m/z values. That is, S1 measures the closeness of the
nearest observed peak to each candidate b ion or y ion, and S2 measures the closeness
of the nearest candidate peak to each observed peak. Note S1 is low when the candidate
peaks are close to observed peaks, and S2 is low when the noise peaks are close to the
candidate peaks or if there are fewer noise peaks. When all peaks for the candidate
peptide are very close to observed peaks that are above the threshold, then exp (−S1)
is high. When all the observed peaks are close to candidate peaks, exp (−S2) will be
high, so that exp (−S1) and exp (−S2) represent sensitivity and specificity.

3.3 Priors

Huang et al. (2004) estimated the average bond cleavage abundance for each amino
acid pair for both the b and y ions for gas-phase dissociation spectra. Collision-induced
dissociation (CID) fragments the peptides even further during the gas phase in the mass
spectrometry process. A cleavage occurs when the peptide bond fragments during
collision induced dissociation, and a cleavage pair is the b and y ion pair that are present
in the peptide. For example, take the peptide QVMELLQ. Recall from Section 2
that QV is one of the six b ions of the peptide QVMELLQ and the complement
to that b ion is the y ion MELLQ. These complementary ions are a result of the
cleavage between the amino acids V andM . This information from Huang et al. (2004)
will give us insight about when we expect to see cleavages in the pairs of amino acid
residues, and thus we use this information to develop prior information about cleavage
pair abundance for our Bayesian approach to identify the true peptide.

3.3.1 Cleavage Prior

The cleavage pair abundance prior, denoted π(λ|β,γ) ≡ π(λ) is defined as:

π(λ) =

p∏
i=1

P (λbi , λ
y
i ) (4)

6



with

P (λbi = λyi = 1) = ρbyi × γi × βi
P (λbi = 1, λyi = 0) = ρbyi × (1− γi)× βi
P (λbi = 0, λyi = 1) = ρbyi × γi × (1− βi)

P (λbi = λyi = 0) = 1− ρbyi + [ρbyi × (1− γi)× (1− βi)]

where λ = (λb,λy) = (λb1, . . . , λ
b
p, λ

y
1, . . . , λ

y
p), ρbyi is the geometric mean of the

average relative abundance of bond cleavages of b and y ions for a particular amino
acid pair for i = 1, . . . , p derived from Huang et al. (2004), γi is the probability of the
presence of a y ion, and βi is the probability of the presence of a b ion. Here, p rep-
resents the number of cleavage pairs. As a matter of notation, note that our parameter
vector θ (= θγ, β) depends on the values of γ and β, but our notation will suppress this
dependency since γ and β will remain fixed throughout the algorithm. Note that the
λbi ’s are modeled as having random marginal Bernoulli distributions with probabilities
ρbyi βi and the λyi s are modeled as having random marginal Bernoulli distributions with
probabilities ρbyi γi, and λbi , λ

y
i are all mutually independent for i = 1, . . . , p. Figure

3 shows the geometric mean of the average bond cleavage abundance for all cleavage
pairs of the b and y ions using Figure 1 in Huang et al. (2004). Note that probabilities
for a particular amino acid cleavage pair that are too close to zero may force the algo-
rithm to exclude reasonable peptides. In order for our prior to be more inclusive, we
use a linear transformation of the scale used in Huang et al. (2004). The linear trans-
formation is of the form ρ = 0.49x+ 0.67. Our rescaled distribution has probabilities
that range from 0.67 to 1.00. [[Figure 3 goes here]]

3.3.2 Sequence Prior

We now want to specify a prior distribution for a particular sequence (or string) of
amino acids in a peptide. The probability of any particular amino acid sequence is
represented by the string prior, π(η), which quantifies the probability of a sequence of
amino acids appearing consecutively in a peptide sequence. For each amino acid pair
in the candidate peptide under consideration, we count how often the pair occurs in the
set of known peptides from the same species. Then we find the empirical probability of
each amino acid pair using our large database of peptides. Note that one could use other
databases that do not contain the current peptide to calculate the empirical probability.
The string prior is defined as the geometric mean of π(ηF ) and π(ηR),

π(η) =
√
π(ηF )× π(ηR), (5)

where π(ηF ) is the joint probability of any particular amino acid sequence calculated
from left to right while π(ηR) is the joint probability of any particular amino acid
sequence calculated in the reverse direction. Note that this is the geometric mean of
π(ηF ) and π(ηR). Here η is the ordered sequence of the amino acids in the current
peptide under consideration, and π(η) is a probability for this particular sequence.
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Denote a generic peptide sequence by A1A2 · · ·Am−1, where m− 1 is the number of
amino acids in the peptide sequence,A0 denotes the beginning of the sequence, andAm
denotes the end of the sequence. For example, consider the peptide TGMSNV SK.
For this candidate peptide having 8 amino acids, m = 9. π(ηF ) is calculated by

π(ηF ) = P (A1 = a1)×
m−1∏
i=1

P (Ai+1 = ai+1|Ai = ai) (6)

withP (A1 = a1) = p1, P [(Ai, Ai+1) = (ai, ai+1)] = pi,i+1, and thereforeP (Ai+1 =

ai+1|Ai = ai) =
pi,i+1∑

j P [(Ai, Ai+1 = (ai, j)]
for j ∈ {A,C, . . . , Y, } where ai rep-

resents the amino acid in the i th position in the peptide sequence and am = signifies
the termination of a sequence. In a similar manner, π(ηR) is computed by

π(ηR) = P (Am−1 = am−1)×
m−2∏
i=0

P (Ai = ai|Ai+1 = ai+1) (7)

withP (Am−1 = am−1) = pm−1, P (Ai = ai|Ai+1 = ai+1) =
pi,i+1∑

j P [(Ai, Ai+1 = (j, ai+1)]

for j ∈ {A,C, . . . , Y, } where a0 = signifies the beginning of a peptide sequence.
Figure 4 shows the joint empirical probabilities for all pairs of amino acids. [[Figure 4
goes here]]

3.3.3 Prior for κ1, κ2

The concentration parameters, κ1 and κ2, are assumed to have independent Gamma(a1,
b1) and Gamma(a2, b2) prior distributions respectively, which are independent of the
other parameters.

3.4 Posterior

Using Bayes’ Theorem, the posterior density can be written as

π(η,λ, κ1, κ2|X) ∝ L(X|λ, τ ,η, κ1, κ2)× π(λ)× π(η, τ )× π(κ1, κ2) (8)
= L(X|θ,η, κ1, κ2)× π(λ)× π(η)× π(κ1, κ2), (9)

where λ, η, and κ1, κ2 are assumed independent. The set of m/z locations given by
τ = (τ b1 , . . . , τ

b
p , τ

y
1 , . . . , τ

y
p )T are determined by the sequence η, and so P (τ |η) = 1.

Note that this posterior density is only known up to a constant and the actual form of
the posterior density is complicated. Therefore, to obtain the posterior probabilities
we must use MCMC simulation. Our Bayesian method incorporates prior information
about the chance of seeing particular cleavage pairs, and also quantifies the prior prob-
ability of any particular specific amino acid sequence. We use this posterior density to
estimate the true peptide, with candidate peptides having high posteriors being judged
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more likely to be the true peptide. Our point estimate of the true peptide is the poste-
rior mode, that is, the candidate peptide (among those visited by the search algorithm)
with the highest posterior probability, and the posterior distribution variance provides
information about the uncertainty of the estimate.

4 A Markov Chain Monte Carlo Algorithm

Our posterior density does not represent a known distribution, and we must employ
Markov chain Monte Carlo (MCMC) methods to sample the parameters (Tierney, 1994;
Robert and Casella, 1999; Andrieu et al., 2003; Sorensen and Gianola, 2002).

4.1 Initialization

To find a starting peptide for the MCMC algorithm, we only consider candidates with
the overall correct mass (within a tolerance). One option is to use an initial iterative
sub-algorithm to obtain a starting peptide. Note the actual mass of the true peptide is
available to us from the mass spectrometry data, and so we can dramatically reduce the
parameter space by searching for peptides with a mass within a specific tolerance (0.5
Da) of the actual mass. To obtain a random starting point, amino acids are randomly
added or removed until a peptide is found that has a mass within a tolerance of the mass
of the true peptide.

While using the method above will reduce the space of initial peptides, it may still
yield a starting peptide far from the truth if the peptide sequence is long, which could
result in our method taking a long time to search for the true peptide. Another option
for finding a starting peptide is to use the results from PepNovo. PepNovo yields a list
of the top 2000 best estimated peptides for the true peptide. We can use a peptide from
this list as our starting peptide, still ensuring it will have the correct total mass within a
tolerance.

4.2 Posterior Simulation

Once the starting peptide is generated, the log likelihood of that peptide is calculated.
Call the current peptide ηcurr (initially this will be the starting peptide). The β and γ
vectors are pre-determined at the beginning of the algorithm and are constant through-
out the algorithm. Before the algorithm begins, a vector λcurr is generated using the
β and γ vectors.

Since the parameter space is quite large, simulated annealing is performed to help fur-
ther explore the parameter space. Simulated annealing incorporates a temperature pa-
rameter in the algorithm to allow one to better search the parameter space for the true
peptide. High temperatures allows more exploration of the parameter space. Lower
temperature restricts the exploration of the parameter space (Kirkpatrick et al., 1983).
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A large temperature parameter is set for the first 95% of iterations and a small temper-
ature parameter is set for the last 5% of iterations.

MARKOV CHAIN MONTE CARLO ALGORITHM

1. A new peptide is created by randomly replacing one, two, or three amino acids
of the current peptide with one, two, or three amino acids.

2. Generate κ1 and κ2 from their full conditional distribution: gamma distributions
with the shape parameter α1 = a1 + s and scale parameter β1 = S1 + b1 and
shape parameter α2 = a2+(t−s) and scale parameter β2 = S2+b2, respectively.
Note that the values of S1 and S2 are based on the current peptide.

3. Compute the posterior probability for both the new and current peptide. Denote
these as ζ1 and ζ2, respectively.

4. Generate U ∼ U(0, 1). If U <

(
ζ1
ζ2
× q(λcurr|λnew)

q(λnew|λcurr)
× q(ηcurr|ηnew)

q(ηnew|ηcurr)

)
,

then the new peptide becomes the current peptide, and λnew becomes λcurr.
Otherwise, both the current peptide and λcurr remain unchanged.

5. Go to 1.

When exploring large state spaces stochastically, it is important that the algorithm be
irreducible: that is, it may visit every potential state with positive probability (Tierney,
1994). To ensure irreducibility, every 1000 steps we generate an entirely new peptide
that is independent of the current state. Note that any sequence with the correct mass
has positive probability of being generated in this step (Tierney, 1994).

Steps 1 - 5 are repeated for a large number of iterations. The peptide with the largest
posterior density is selected as the true peptide, and we retain all generated peptides
along with their approximate posterior probabilities (up to a constant).

Stochastic search algorithms with finite state spaces typically satisfy certain theoretical
properties more readily than those with an infinite number of states (Tierney, 1994).
We argue that our state space is finite, because for any given spectrum, the peptide
cannot be arbitrarily long. A mass spectrometer always accurately measures the total
weight of the true peptide and there is a maximum number of residues that produces a
peptide of that weight.

Trace plots of the log posterior and parameters are used to monitor convergence of the
algorithm to determine whether the chain has converged to its stationary distribution
and whether the chain is mixing well.

To calculate the first proposal densities we need to calculate q(λcurr|λnew) and q(λnew|λcurr).
Note that q(λcurr|λnew) = q(λcurr) and q(λnew|λcurr) = q(λnew) since the new λ
is generated independently of the current λ. Recall that λ follows a Bernoulli dis-
tribution. Suppose Λ is a multinomial random variable and λ is a particular vector.
Suppose we set β = (0.05, 0.99, 0.99) and γ = (0.10, 0.99, 0.99) and suppose we
have λcurr = (0, 1, 1, 0, 1, 1) and λnew = (0, 0, 1, 1, 0, 1). We would calculate the
proposal densities as follows:
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q(λcurr|λnew) = q(λcurr) = P (Λcurr = λcurr)

= (0.95)× (0.99)× (0.99)× (0.90)× (0.99)× (0.99)

= 0.82

and

q(λnew|λcurr) = q(λnew) = P (Λnew = λnew)

= (0.95)× (0.01)× (0.99)× (0.10)× (0.01)× (0.99)

= 9.3× 10−6.

To calculate the second set of proposal densities we need to calculate q(ηcurr|ηnew)
and q(ηnew|ηcurr). Recall from step 1 of the MCMC algorithm, we always replace
either one, two, or three amino acids of the current peptide with either one, two, or
three amino acids. Hence there is a 1/3 chance of choosing either one, two, or three
amino acids to be replaced. If only one animo acid is chosen to be replaced, then there
is a 1/n chance that any particular amino acid will be chosen (n represents the total
number of amino acids in the peptide sequence). If a pair of amino acids is chosen to
be replaced, then there is a 1/(n−1) chance that a consecutive pair of amino acids will
be chosen. If three consecutive animo acids are chosen to be replaced, then there is a
1/(n− 2) chance that any particular triplet of consecutive amino acids will be chosen.

Also, note that the current and new peptide must have a total mass that is within a
tolerance of the total mass of the true peptide. After the number of amino acids to be
replaced is fixed, a list of single, pairs, and/or triplets of amino acids is generated such
that each has a mass within a tolerance of the mass of the amino acid(s) that is to be
replaced. Therefore, the probability that a particular single, pair, or triplet is chosen is
1/m where m is the number of singles, pairs, and/or triplets in the list of amino acids
that satisfy the weight tolerance. If a pair or triplet is selected from the list, then we
must consider all permutations of the pair or triplet. For example, if the pair AK is
selected from the list, we then randomly select whether AK or KA is chosen. The
probability for choosing a particular permutation of a set of amino acids is 1/q where
q is the number of permutations of the set of amino acids.

5 Simulation Study

In this section, we simulate data based on our likelihood in order to get a better under-
standing of the tuning parameters, with the goal of recovering the theoretical spectrum
more often. Since our algorithm uses only the m/z values that have intensities above
a threshold, we generate a spectrum with signal and noise peaks that are already as-
sumed to be above a threshold. For a given peptide, we will know the locations of the
true peaks. Denote the true set of peak locations as τ = (τ1, . . . , τs), where s repre-
sents the total number of true peaks. Each true peak will then generate a signal peak
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and a random number of noise peaks that are above the threshold. We use two differ-
ent noise structures, one using the Laplace distribution and the other using a Poisson
process.

5.1 Laplace Noise Structure

We first employ the Laplace distribution to simulate noise peaks (Damsleth and El-
Shaarawi, 1989; Kemp, 2003). Using the Laplace distribution ensures that we have a
generative model, allowing us to generate spectra using our model that is defined in
Section 3.2.

Mass spectrometers do not always capture peaks that appear at the beginning or end
of the spectrum, causing the rate of noise peaks per signal peak to vary over an ob-
served spectrum. Therefore, before we generate a spectrum, we first split the observed
spectrum into three sections. Each section will contain a number of signal peaks, de-
termined to be a percentage of the total signal peaks. Then for each signal peak in
each section, a random number of noise peaks will be generated. To explain how to
find the number of signal peaks for each section, consider a peptide with s = 20 true
peaks. The first section will contain s1 = 20 × 0.1 = 2 signal peaks and the third
section will contain s3 = 20 × 0.1 = 2 signal peaks. Thus the middle section will
contain s2 = 20− 2− 2 = 16 signal peaks. The proportions of 0.1 for each boundary
section reflect the characteristics of the data sets we have studied. For each section of
the spectrum, we use a discrete uniform with parameters a = 0 and b to determine the
number of noise peaks per signal peak to be generated. The values of b depend upon
the section of the spectrum. Lower values of b will be chosen for the beginning and
ending sections and a higher value of b will be chosen for the middle section. Note
that increasing b for each section will cause our data to become noisier. For the first
section, the value of b, denoted as b1, will be b1 = 3. For the middle and third section
the value of b will be b2 = 10 and b3 = 5, respectively. These values work well and
tend to generate a moderate number of noise peaks.

We then simulate from a Laplace distribution to generate the locations of both the
signal peak and noise peaks with fixed parameters κ1 and κ2. Increasing κ2 causes
the location of the generated noise peaks to be tightly centered on the signal peaks.
Decreasing the value of κ2 causes the location of the generated signal peaks to be
shifted from their location on the theoretical spectrum and and thus be spread out far
from the signal peaks.

The steps to generate a spectrum with Laplace noise structrue is as follows:

1. Determine the total number of true peaks, s, and compute τ by finding the b and
y ions, based on the given peptide.

2. Simulate signal peaks from a density f(xi) ∝ e−κ1|xi−τi| for i = 1, . . . , s.

3. Use an indicator function λi with probability function P (λ) =
∏p
i=1 P (λbi , λ

y
i ),

where p = s− 1 is the total number of b ions (or, equivalently, the number of y
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ions) to determine the presence or absence of each signal peak. P (λ) was given
in Section 3.3.1.

4. For each of the three sections in the spectrum, the number of noise peaks for
each signal peak in the section is generated using a discrete uniform.

5. Simulate noise peaks from a density f(xj) ∝ e−κ2|xj−τi|, where t represents the
total number of peaks for j = s + 1, . . . , t, where t represents the total number
of peaks.

The likelihood for the generated set of peaks is of the form

L ∝ κ1e−κ1
∑s

i=1 λi |xi−τi|κt−s2 e−κ2
∑t

j=1 |xj−τj |. (10)

Note the similarity of this expression with the previous likelihood in Equation 1 dis-
cussed Section 3.2, although it is not exactly the same. The first component in the
likelihood defined in Section 3.2 sums over the minimum absolute distances between
the closest observed peak to a candidate peak and the second component sums over the
minimum absolute distance between the nearest candidate peak to each observed peak.
In Equation 10, the first component just sums over the absolute distances between the
closest observed peak to a candidate peak and the second component sums over the
absolute distance between the nearest candidate peak to each observed peak. In the
following simulations, we use the previous likelihood in Equation 1, not Equation 10,
for inference.

5.2 Poisson Noise Structure

Using a Poisson process, we can generate noise peaks that are independent of the signal
peak locations. As with the Laplace noise structure, the spectrum is split into three sec-
tions. To determine the number of noise peaks needed for each section, the total number
ofm/z values, denoted as q, that have intensity values above a specific threshold is first
found from the observed spectrum of the true peptide. Then q is split into three values,
(q1, q2, and q3), where these values will determine the number of noise peaks needed
for each section. Reflecting the processing of the spectrum by the mass spectrometer,
the first section of the spectrum will have the fewest noise peaks and the middle section
will have the most noise peaks. To illustrate how to find the number of peaks needed
for each section, consider a peptide whose spectrum contains 100 m/z values. For the
first section of the spectrum, there will be q1 = 100 × .25 = 25 noise peaks that are
generated. The third section of the spectrum will have q3 = 100 × .25 = 25 noise
peaks. The middle section will then have q2 = 100 − 25 − 25 = 50 noise peaks.
The proportions 0.25 and 0.75 for each boundary section were reflect the characteris-
tics of the data sets we have studied. To obtain the locations for the noise peaks for
each section, the cumulative sum of randomly generated values from an exponential
distribution, shifted by a specified value c, are found by the following algorithm:

1. Initialize t = 0.

2. Generate x ∼ Exp(θ)
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3. Set t = t+ x.

4. Store t in t.

5. Repeat qi times.

6. Compute t+ c,

where t is the vector of noise peaks for section i for i = 1, 2, 3. In order for the
generated noise peaks to have m/z values in the same range as the observed spectrum,
we must set an initial value to be added to the Poisson process. Recall the amino acid
G has the smallest mass of 57.0215 Da. Let maxmz be the largest m/z value for the
observed spectrum. For the first section, the value of c (denoted as c1) is found by
c1 = 57 + (maxmz − 57)× 0.1. The value for c for the middle section (denoted as c2)
is found by c2 = c1 + (maxmz − 57)× 0.2 and for the last section c (denoted as c3) is
found by c3 = c1 + c2 + (maxmz − 57)× 0.3. The proportions 0.1, 0.2, and 0.3 were
chosen after experimentation. To demonstrate how to find c, consider a peptide whose
maximum m/z value is 1150. The values of c for each section would be the following:
c1 = 57 + (1150 − 57) × 0.1 = 166, c2 = 166 + (1150 − 57) × 0.2 = 385, and
c3 = 166 + 385 + (1150− 57)× 0.30 = 879.

The full algorithm for obtaining the signal and noise peaks using a Poisson process
with a parameter θ is defined as

1. Determine the total number of true peaks, s, and compute τ by finding the b and
y ions, based on the given peptide.

2. Simulate signal peaks from a density f(xi) ∝ e−κ1|xi−τi| for i = 1, . . . , s.

3. Use an indicator function λi with probability function P (λ) =
∏p
i=1 P (λbi , λ

y
i ),

where p = s− 1 is the total number of b ions (or, equivalently, the number of y
ions) to determine the presence or absence of each signal peak.

4. For each of the three sections in the spectrum, compute the number of noise
peaks for each section of the spectrum.

5. Simulate noise peaks from the algorithm described above.

When using a Poisson process to simulate the location of the noise peaks, we need to
choose the value of the fixed parameter θ. Increasing θ causes clusters of tightly spaced
noise peaks. Decreasing the value of θ produces fewer noise peaks in the generated
spectrum and thus it does not imitate the observed spectrum as well.

5.3 Example 5.1

Before simulating the spectrum, we must specify the parameters. We set κ1 and κ2
to be 50 and 0.10, respectively. We also set θ = 1/15. For the indicator function λ,
we set the first elements of β and γ to be pb1 = 0.05 and py1 = 0.10. We set these
probabilities to be low because the mass spectrometer rarely captures the first b ion and
first y ion. We set all other pbi and pyi to 0.80 for i = 2, . . . , p.
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First consider a peptide with a short amino acid sequence. Consider the peptide TGMSNV SK
whose observed spectrum contains m/z values that range from 123 to 749 Da. The to-
tal number of true peaks is s = 14 and so s1 = 1, s2 = 12, and s3 = 1 using boundary
section proportions 0.1. The total number ofm/z values in the observed spectrum with
intensity values above the threshold is q = 75 and so q1 = 19, q2 = 37, and q3 = 19.

For each example shown, a table of the 10 best estimated peptides is given along with
their corresponding log posterior value. The breakdown of the log posterior is also
given to show which part of the model is most heavily influencing the log posterior and
why the true peptide is not (if that is the case).

We simulate a spectrum with minimal noise and one with substantial noise. For the
Laplace case, to decrease the number of noise peaks, we set the values of b for each
section of the spectrum to be b1 = b2 = b3 = 2 and to increase the number of noise
peaks, the values of b for each section to b1 = b2 = b3 = 10. For the Poisson case,
to decrease the number of noise peaks, we decrease the values of q1, q2, and q3 by 15
and to increase the number of noise peaks in the generated spectrum, we increase the
values of q1, q2, and q3 by 15.

After the spectrum is generated, our method described in Section 3.2 is then applied to
the simulated spectrum. The starting peptide is GTMSGRSQ, which was obtained
from the results from PepNovo when applied to the real data. The algorithm was run
for 10000 iterations.

Table 1 shows the posterior mode for the TGMSNV SK example using the simulated
spectrum for each of the three noise levels using a Laplace noise structure. Table 2
shows the posterior mode for the TGMSNV SK example using the simulated spec-
trum for each of the three noise levels using a Poisson noise structure. Both tables
provide the estimated log posterior densities with the breakdown of the log posterior.
The true peptide is highlighted in bold. Both tables show when using minimal noise
we see that the true peptide is the top estimated peptide, which ensures our method is
performing well in both the Laplace and Poisson case. In cases when the spectrum has
more noise, our method was still able to identify the true peptide as among the best
choices using either noise structure. When using moderate noise, the true peptide is
estimated as the best peptide with using the Laplace noise structure. Under the Poisson
noise structure with moderate noise, the true peptide is estimated as the second best
peptide, but notice the log posterior for the best estimate and the log posterior for the
true peptide is quite similar. [[Table 1 goes here]] [[Table 2 goes here]]

5.4 Example 5.2

Here we set the parameters to be the same as in Section 5.3. We now generate a
spectrum for a peptide with a longer amino acid sequence. The generated spectrum
is based on the peptide Y HFEQSTV TSQPAR whose observed spectrum contains
m/z values that range from 235 to 1634 Da. The total number of true peaks is s = 26
and so s1 = 3, s2 = 20, and s3 = 3 using boundary section proportions 0.1. The
total number of true peaks is s = 26 and so s1 = 3, s2 = 20, and s3 = 3. The total
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number ofm/z values in the observed spectrum with intensity values above a threshold
is q = 157 and so q1 = 39, q2 = 79, and q3 = 39 (up to a constant).

As in Example 5.3, we also simulate spectra with minimal and substantial noise. After
the spectrum is simulated, we applied our method to the simulated spectrum. The start-
ing peptide is HY FETDQATSKPVK, which was obtained from the results from
PepNovo when applied to the real data. The algorithm was run for 10000 iterations.

Table 3 shows the posterior mode for the Y HFEQSTV TSQPAR example using the
simulated spectrum for each of the three noise levels under a Laplace noise structure,
and Table 4 shows the posterior mode for the Y HFEQSTV TSQPAR example us-
ing the simulated spectrum for each of the three noise levels using Poisson noise. Both
tables provide the corresponding estimated log posterior densities with the breakdown
of the log posterior. The true peptide is highlighted in bold. Table 3 shows when using
minimal noise we see that the true peptide again is the top estimated peptide, which
shows our method is performing well. When using moderate noise, the true peptide is
estimated as the best estimated peptide. When using substantial noise, we see that the
true peptide was not identified in the top estimated peptides but there was more noise
added into the spectrum. Table 4 shows when using minimal noise, the true peptide
again is the best estimated peptide, confirming that our method is performing ade-
quately well. When using moderate noise, the true peptide is estimated as the second
best peptide. When using substantial noise, we see that the true peptide is among the
top estimated peptides. Although the spectrum has more noise, our method was still
able to identify the true peptide as being among the best choices. [[Table 3 goes here]]
[[Table 4 goes here]]

5.5 Comparison of Noise Structures

With moderate noise, both the methods perform equally well for both noise structures
for peptides with both short and long amino acid sequences. With minimal noise, once
again both noise structures performed equally well for peptides with short and long
amino acid structures. With minimal noise, the true peptide was identified in all cases.

For peptides with short and long amino acid sequences, using either noise structure,
our method performed well for all levels of noise tried. The noise generated in the
spectrum is not completely realistic since certain peak features like isotopic peaks,
adducts, and post translational modifications are not included in the noise and so the
noise generated is somewhat artificial. Although the noise generated in the spectrum
may not be realistic, the methods are promising. An advantage of using a Laplace noise
structure is that our model would be an approximation to a generative model. Unlike
a discriminative model, a generative model allows one to generate samples from the
joint distribution. Generative models are more flexible since they are full probabilistic
models of all variables and can be used to simulate values of any variable in the model
(Singla and Domingos, 2005). Note our model used is an approximation to the Laplace
model.
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6 Real Data Application

Most peptides in the PNNL dataset described in Section 1 are of length 8 to 20 amino
acids. Our data include some relatively longer peptides due to the type of equipment
used to process the data. Recall the equipment used was a LTQ Orbitrap mass spec-
trometer, which is a hybrid machine composed of a linear ion trap mass spectrometer
and the Orbitrap mass analyzer that uses a fast Fourier transform algorithm (Yates
et al., 2009). The dataset contains 1,206 peptides with lengths ranging from 7 to 31
amino acids and an average length of 15.16. The data are doubly charged and the total
mass for each peptide is given. The dataset contains a set of masses and corresponding
intensities with an average intensity value of 50.7.

The data must first be pre-processed. We choose to remove the doubly charged parent
ion from the dataset. A parent ion is the fragment ion generated in mass spectrometry
before the ion is broken apart into further ions. The m/z value of the doubly-charged

ion is
∑K
i=1m(pi) + 1

2
. Therefore, we remove the peak at that m/z value. After ex-

tensive numerical experimentation, we found that using the 75th percentile to calculate
the constant and moving threshold works well. This means we use the observed m/z
values in the data that have corresponding observed intensity values above the thresh-
old value in T . The mass spectrometer is not always accurate and this can cause the
ion fragments that are detected to be slightly shifted from their theoretical position.
Therefore, we use a tolerance level of 0.5 Da. That is, we allow the ion peak locations
up to ±0.5 Da from their theoretical positions. We set the initial components of β and
γ to be pb1 = 0.05 and py1 = 0.10. We set these probabilities low because the mass
spectrometer rarely captures the first b and y ion. We set all other pbi and pyi to equal
0.80 for i = 2, . . . , p. We must also specify the hyperparameters in the Gamma prior
distribution for κ1 and κ2. After extensive numerical experimentation, the values of
a1, b1, a2, and b2 were set to be 5.5, 0.1, 3, and 1/0.01, respectively. From consid-
erable experimentation, the large temperature parameter was set to 500 and the small
temperature parameter is 1.

While using a threshold of 75% works well, we investigated several other threshold
values. As the threshold is decreased, the estimated peptides become less similar to the
true peptide. This happens because as we lower the threshold, more noise enters the
observed spectrum and the value of S2 in the likelihood is greatly increased. Therefore,
our algorithm cannot find the true peptide. As the threshold is increased, at a certain
point the estimated peptides become less similar to the true peptide. Although there is
less noise in the observed spectrum when the threshold is increased, signal peaks may
be removed from the observed spectrum with a large threshold. thus, our algorithm will
not be able to identify correctly the true peptide. Using a threshold of 75% removes
many noisy peaks while still retaining the signal peaks.

Different tolerances affect the performance of the method. Using a small tolerance
like 0.1 Da hardly allows for any error in the mass spectrometer, so that the observed
spectrum would need to be aligned almost perfectly with the theoretical spectrum. A
large tolerance like 1.0 Da would allow more room for error but it would expand the
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parameter space that needs to be searched, which could prevent the algorithm from
finding the true peptide in an efficient manner.

6.1 Example 1

Figure 5 is a plot of the observed spectrum for the peptide TGMSNV SK. The theo-
retical spectrum aligns nicely with the observed spectrum, although there is quite a bit
of noise in the center of the graph even after thresholding. [[Figure 11 goes here]]

Starting from a completely random place is idealistic, but it may not be best in prac-
tice since the state space is so large. We use the results from PepNovo and obtain a
starting peptide, TGFAGGV SGA, which has a total mass that is within 0.5 Da of
the weight of the true peptide. After 100,000 iterations, our best estimate for the true
peptide is TGMSNV SK with a log posterior density of −15.16 (up to a constant).
Table 5 shows the top estimated peptides for the TGMSNV SK example, with their
corresponding estimated log posterior densities and the breakdown of the log posterior
(log likelihood and log priors). The true peptide is estimated as the best having the
largest log posterior density. [[Table 5 goes here]]

To ensure our method is obtaining similar results for various starting peptides, consider
results from using different starting peptides that we obtain from PepNovo: SAMYHSK,
TGAFGRSK, and GTFANEGK. Table 6 shows the top estimated peptides along
with their corresponding log posterior densities for the above starting peptide values.
The results are similar and that the true peptide (highlighted in bold in the table) is cap-
tured and is captured as the best estimated peptide in all three cases. The log posterior
densities are also similar in the three cases. [[Table 6 goes here]]

6.2 Example 2

Figure 6 is a plot of the observed spectrum for the peptide DLV ESAPAALK. The
theoretical spectrum aligns nicely with the observed spectrum. [[Figure 12 goes here]]

Using an initial peptide of DLV ESY FLK from the PepNovo results and 100,000
iterations, we obtain our estimate DLV ESAPAALK with a log posterior density of
42.90 (up to a constant). We see that the true peptide is estimated as the best. Table 7
shows the top estimated peptides for the DLV ESAPAALK example along with the
breakdown of the log posterior. [[Table 7 goes here]]

Consider the results from using different starting peptides that we obtain from Pep-
Novo: DLV TDAPAAIQ, LDV TDAPAALK, and LDV ETGPAAIQ. Table 8
shows the top estimated peptides along with their corresponding log posterior densities
for the above starting peptide values. Again the true peptide (highlighted in bold in
the table) is the best or is among the best choices in each case, and the log posterior
densities are also similar in the three cases. [[Table 8 goes here]]
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6.3 Result Comparisons

To quantify objectively how our method performs relative to its competitors, we com-
pare our results with those using the rank score and PepNovo score of PepNovo. Since
our method can identify peptides that have not been cultured, we make no comparisons
with SEQUEST and MASCOT. We will not make a distinction between the amino
acids I and L because they have identical masses of 113.084. Although PepNovo does
not make a distinction between the amino acids K and Q because the difference in
their masses is only a minute difference of 0.04 Da, we will make the distinction.

Our comparison method uses the minimum number of switches in the amino acid se-
quence of the peptide needed to obtain the true peptide. Switches are only considered
if the total mass remains within 0.5 Da of the total mass of the true peptide. If the best
estimated peptide is the truth, then minimum number of switches would be zero. To
illustrate this comparison method, consider the true peptide V SEGQTV R with the
estimate WEGQTV R. One can see the only difference from the true peptide is that
the estimate begins with W while the true peptide begins with V S. Note that the mass
of W (186.079 Da) is within 0.5 Da of the mass of V S (186.1) and so the minimum
number of permissable switches is 1. If more than 3 switches are needed to obtain the
true peptide, we denote the minimum number of switches as 4+. In both the PepNovo
rank score and PepNovo score, the best estimated peptide may not have the same mass
as the true peptide. PepNovo does provide the N − Gap, which is the mass gap from
the N-terminal to the start of the de novo sequence and the C−Gap, which is the mass
gap from the C-terminal to the end of the de novo sequence. While it does provide
those mass values, it cannot detect the amino acid residues that should correspond to
the mass gaps. For example, consider the true peptide DLV ESAPAALK with a to-
tal mass of 1113.616 Da. Using the PepNovo rank score, the best estimated peptide is
DNV ESLEV , which has a mass of 885.4088 Da. Note that this mass is the sum of
masses of each amino acid residue in the sequence and does not include the mass of
a water molecule and hydrogen molecule. That is accounted for in the mass gap. The
C − Gap value given is 229.029 Da implying there are amino acid residues missing
from the end of the de novo sequence whose mass should total 229.029 Da. We cannot
look at the minimum number of switches; however, we do know that a peptide with a
total mass less than the total mass (outside of the tolerance) of the true protein cannot
be the true peptide.

Table 9 displays the best estimated peptides for the PepNovo rank score, the PepNovo
score, and our method along with the corresponding true peptide. The minimum num-
ber of switches is in parentheses. One can see that in most cases when using the Pep-
Novo rank score, the best estimated peptide does not have the correct total mass. An
advantage of our method is that all our estimated peptides will have the correct total
mass (within a tolerance). Comparing the results from the PepNovo score and our
method of using the Bayes log posterior, the PepNovo score tends to do slightly bet-
ter for peptides with shorter amino acid sequences. However, for peptides with longer
amino acid sequences, our method tends to do better. Note that one method does not
necessarily work best in every case, yet a combination of two good methods can pro-
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duce an even better method. Therefore, an avenue to explore in the future is developing
a rank score method that will combine our method with PepNovo’s method. [[Table 9
goes here]]

7 Discussion

Proteomics produces large amounts of spectra from mass spectrometry. Issues such
as post translational modifications (PTMs), mutations, and contaminants can cause the
spectra to fail to match peptides from a database. Also, there are copious microorgan-
isms such as prokaryotes and eukaryotes that have not been identified and therefore,
using a database search to identify these peptides would not prove useful. Of those
microorganisms that have been identified, some show evidence of PTMs, which can
create complications in the de novo sequencing when comparisons are made between
the theoretical spectrum and the observed spectrum. Thus the need for a method of
identifying peptides that does not rely on a known database and is not is affected by
PTMs is evident.

Another reason for the need for an accurate peptide identification is protein sequenc-
ing, the method of identifying the true amino acid sequence of a protein. Identifying
an entire protein is almost impossible, and so the protein is split into short peptides.
Ergo, being able to correctly identify the amino acid sequence of a peptide will aid in
identifying the true protein sequencing.

There are limitations in the current methods for protein identification. Our method
hopes to alleviate such drawbacks of de novo sequencing and database searches. By
using a Bayesian approach, we allow prior knowledge of the peptides to help us to find
the best estimate of the true peptide. Due to the complexity of our posterior density, we
employ Monte Carlo methods. Due to the complexity of our posterior density, we use
MCMC simulation to obtain the posterior probabilities. This allows one to approximate
the target distribution, in our case the posterior distribution of the unknown peptide se-
quence. One advantage of our method is that it is not dependent upon known peptides.
We hope that our method will obtain more accurate estimates of the true peptide, help-
ing researchers in the field of proteomic research and potentially aiding in identifying
microbes. With the study of proteins becoming more important in identifying early
stages of diseases (most commonly cancer), it is of great importance to be able to cor-
rectly identify these proteins. Conceivably, use of these peptides as biomarkers for
diseases could aid in the diagnosis of types of cancers or find better patient treatments.

Cleveland and Rose (2012) developed a method to identify better peaks using a neural
network, which can be used to construct a predictive model that does not require an ex-
tensive understanding of peptide fragmentation. Better identification of peaks will lead
to a more accurate theoretical spectrum and ultimately better identification of peptides.
Recall from Section 2 that other ions can produce peaks in the observed spectrum.
Like our method, Cleveland and Rose (2012) concentrates on identifying signal peaks
corresponding to b and y ions; they also employ a leveraged neural network (LNN),
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which is composed of two neural networks used in order to classify peaks. In the
first neural network, peak features, such as isotopologues and neutral losses, are found
from the data in the spectrum. Then in the second neural network, the results from the
first neural network are leveraged as extra features in the second neural network. This
process selects peaks with higher precision and reduces the number of peaks in the
spectrum, which could make identifying the true peptide more efficient. For additional
information about the LNN, see Cleveland and Rose (2012).

An important aspect for the future development is to refine the Bayesian model. The
model can be refined by including more signal peaks: b−H2O, b−NH3, y−H2O, y−
NH3, y

2, isotopic peaks, etc, which could aid in identifying which are signal peaks and
which are noise peaks. Adapting the prior to assign probabilities to the length of the
peptide is an another avenue one could explore. The current prior favors shorter peptide
sequences. Peptides with shorter amino acid sequences have higher prior probabilities
than peptides with longer amino acid sequences. A fixed dimension parameter space
is currently used. One could explore using a reversible jump that will ensure that the
proposed new candidate peptide will have similar posterior strength to the existing
candidate peptide. This guarantees that the move and its reverse will both have a good
chance of being accepted by the algorithm (Hastie and Green, 2012).

The Bayesian framework and model are in place for practical usage. With some fur-
ther modeling refinements, the method we present will be a promising addition to the
peptide identification methodological toolbox.
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Table 1: The top estimated peptides from the MCMC algorithm along with their corre-
sponding log posterior densities, log likelihood, log cleavage prior, log sequence prior,
log κ1 prior, and log κ2 prior for the peptide TGMSNV SK when using a simulated
spectrum for each of the three noise levels using a Laplace noise structure.

Noise Level Peptide Log Posterior Log Likelihood Log Cleavage Log Sequence Log κ1 Log κ2

Densities Prior Prior Prior Prior

Minimal Noise

TGMSNVSK -42.58 -12.84 -8.03 -25.62 5.30 -1.40
TGMYHSK -47.51 -20.86 -7.51 -22.00 4.37 -1.51
FADTIEK -49.95 -25.52 -6.41 -20.21 3.35 -1.15
WIFSDR -50.66 -28.08 -4.84 -20.35 3.82 -1.20

FVNNSDK -54.76 -26.37 -6.98 -22.18 2.15 -1.39

Moderate Noise

TGMSNVSK -27.82 0.98 -8.94 -25.62 6.08 -0.32
AEPTDYK -47.97 -24.68 -5.39 -21.15 3.76 -0.50
DEMLTSK -49.36 -24.43 -5.85 -22.76 4.17 -0.49
ASAYQQR -49.39 -22.53 -8.26 -21.49 3.37 -0.48
APNLAIPK -51.56 -22.29 -8.97 -22.70 2.94 -0.54

Substantial Noise

TGMPFDR 27.89 47.60 -4.20 -21.79 5.94 0.34
TGMSNVTGG 26.22 63.06 -11.25 -31.85 6.00 0.25
TTSSNVASG 16.59 49.34 -7.83 -31.11 6.00 0.19
TGMSNVSQ 14.27 41.50 -5.23 -28.29 6.04 0.25
TGMSNVSK 7.23 37.53 -10.95 -25.62 6.06 0.21

Table 2: The top estimated peptides from the MCMC algorithm along with their corre-
sponding log posterior densities, log likelihood, log cleavage prior, log sequence prior,
log κ1 prior, and log κ2 prior for the peptide TGMSNV SK when using a simulated
spectrum for each of the three noise levels using a Poisson noise structure.

Noise Level Peptide Log Posterior Log Likelihood Log Cleavage Log Sequence Log κ1 Log κ2

Densities Prior Prior Prior Prior

Minimal Noise

TGMSNVSK -2.03 25.19 -6.57 -25.62 5.78 -0.81
TGMSRGSK -24.68 8.33 -6.50 -31.16 5.33 -0.67
SVFNKTQ -31.30 -1.63 -5.75 -28.69 5.22 -0.45

TGMSRGSQ -36.43 0.58 -8.07 -33.83 5.47 -0.58
NSVAAHPQ -54.21 -22.24 -7.99 -29.14 5.38 -0.22

Moderate Noise

SAMSNVSK 12.60 40.61 -7.14 -25.66 5.41 -0.62
TGMSNVSK 11.30 43.79 -11.66 -25.62 5.33 -0.55
GTMSNVSK 9.79 40.27 -8.84 -26.39 5.35 -0.60
SAFANVSK 9.30 37.84 -8.20 -24.92 5.13 -0.54

TGMSNVSGA -61.57 -21.87 -9.56 -31.08 2.11 -1.16

Substantial Noise

SAMSGGVSK 17.97 49.44 -7.79 -28.35 5.01 -0.34
TGMSGGVSK 14.31 46.91 -8.81 -28.31 4.85 -0.34
TGMSNVSK 0.55 29.41 -7.56 -25.62 4.86 -0.55
TGMSNVSAG -3.03 33.35 -8.72 -31.85 4.76 -0.57
TMGSNVSK -7.21 21.85 -7.56 -25.62 4.82 -0.70
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Table 3: The top estimated peptides from the MCMC algorithm along with their corre-
sponding log posterior densities, log likelihood, log cleavage prior, log sequence prior,
log κ1 prior, and log κ2 prior for the peptide Y HFEQSTV TSQPAR when using a
simulated spectrum for each of the three noise levels using a Laplace noise structure.

Noise Level Peptide Log Posterior Log Likelihood Log Cleavage Log Sequence Log κ1 Log κ2

Densities Prior Prior Prior Prior

Minimal Noise

YHFEQSTVTSQPAR 6.21 55.98 -10.29 -47.30 5.99 0.22
YHFSEGSSVVSQPAR 4.40 62.07 -16.64 -47.08 5.86 0.19
YHFSEKTVTSQPAR 3.60 55.12 -10.29 -47.30 5.82 0.25

YHFSEGATTVSQPAR 2.45 60.22 -16.64 -47.08 5.79 0.16
LIAFFNGGGATCHEVD -41.45 29.23 -16.33 -59.10 4.72 0.04

Moderate Noise

YHFEQSTVTSQPAR 88.52 141.08 -13.57 -44.63 5.44 0.19
YHFEQSTVTNTPVQ 86.87 145.87 -17.28 -47.56 5.67 0.16

GDKFEQSTVTSQPAR 85.00 147.05 -18.65 -49.15 5.62 0.14
YHFEQSTVTNTPAR 84.01 134.36 -12.12 -43.85 5.53 0.09
YHFAWSTVTSQPAR 41.81 102.71 -18.84 -46.80 4.63 0.11

Substantial Noise

YHFEQSTVTQSPLN 180.51 241.92 -18.71 -49.14 5.75 0.68
YHFEKSTVTQSPAR 163.42 220.25 -14.52 -48.20 5.16 0.73
YHFEKSTVTSKPAR 157.52 218.14 -16.35 -50.41 5.45 0.69
YHFEQSTVTQSPAR 154.39 206.48 -13.09 -44.69 5.02 0.67
YHFEQSTSISQPAR 116.96 169.27 -12.00 -45.25 4.39 0.55

Table 4: The top estimated peptides from the MCMC algorithm along with their corre-
sponding log posterior densities, log likelihood, log cleavage prior, log sequence prior,
log κ1 prior, and log κ2 prior for the peptide Y HFEQSTV TSQPAR when using a
simulated spectrum for each of the three noise levels using a Poisson noise structure.

Noise Level Peptide Log Posterior Log Likelihood Log Cleavage Log Sequence Log κ1 Log κ2

Densities Prior Prior Prior Prior

Minimal Noise

YHFEQSTVTSQPAR 48.16 101.54 -14.20 -44.63 4.96 0.49
YHFEQSTVTSKPAR 44.39 100.61 -14.65 -46.89 4.88 0.44
YHFEQSTVTSKPNL 41.20 103.98 -16.84 -50.91 4.55 0.41

YHFEQSTPCSPAGAR -9.05 58.66 -14.34 -58.55 4.78 0.39
YHFEKSPTSSSGPAR -68.16 0.13 -15.63 -57.43 4.33 0.45

Moderate Noise

YHFQTFAVEGQPAVG 8.55 74.36 -17.51 -52.15 3.76 0.10
YHFEQSTVTSQPAR 6.41 77.81 -20.77 -54.41 3.67 0.10

YHFGATMEGEGQPAVG -3.28 67.19 -20.01 -53.99 3.40 0.11
YHFGAGMETEGQPAVG -9.41 59.44 -18.46 -53.92 3.48 0.05
YHFGATFAVEGQPAVG -47.16 18.95 -20.45 -48.14 2.67 -0.17

Substantial Noise

YHFEQSTVTSGAPAR 140.22 192.03 -17.16 -47.31 5.92 0.40
YHFEAGSTVTSGAPAR 135.46 190.34 -17.10 -49.72 5.58 0.41
YHFEAGSTVTSKPAR 133.49 183.83 -13.50 -49.31 5.87 0.36
YHFEQSTVTSQPAR 128.28 173.90 -13.44 -44.63 5.86 0.37
YHFEQSTVMGQPAR 116.28 165.56 -15.99 -45.28 5.66 0.33
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Table 5: The top estimated peptides from the MCMC algorithm along with their corre-
sponding log posterior densities, log likelihood, log cleavage prior, log sequence prior,
log κ1 prior, and log κ2 prior for the peptide TGMSNV SK. The true peptide is in
bold.

Peptide Log Posterior Log Likelihood Log Cleavage Log Sequence Log κ1 Log κ2

Densities Prior Prior Prior Prior
TGMSNVSK -15.16 12.87 -8.17 -25.62 6.36 -0.60
TMGSNVSK -44.00 -16.19 -7.18 -25.75 5.91 -0.79
TWSNSTK -47.16 -21.11 -6.02 -23.96 4.47 -0.54
FDIGDTR -49.74 -24.43 -6.94 -21.34 3.61 -0.64
WEMDDK -49.76 -26.55 -6.42 -19.54 3.36 -0.61
VYTLSLK -52.27 -27.88 -4.70 -22.09 2.90 -0.50
YLTGLEK -56.91 -32.42 -6.32 -21.32 3.59 -0.43
FFPAVSR -56.95 -30.52 -7.87 -20.88 3.06 -0.74

TMEEVSK -57.88 -35.85 -4.69 -22.42 5.67 -0.60
VSTYLLK -58.16 -31.97 -7.13 -21.46 3.11 -0.71

Table 6: The top estimated peptides from the MCMC algorithm along with their cor-
responding log posterior densities for the peptide TGMSNV SK for three different
starting peptides. The true peptide is in bold.

Starting Peptide
SAMYHSK TGAFGRSK GTFANEGK

Peptide Log Posterior Peptide Log Posterior Peptide Log Posterior
TGMSNVSK -14.31 TGMSNVSK -17.95 TGMSNVSK -14.67
SMTQTQK -49.50 ITLYADK -27.54 MGSNVSQ -22.76
TMTLETQ -50.12 TGMVTTTL -31.73 TFQSQWK -36.20

SLSIYLK -52.39 MGAITMSI -41.43 VMDPFSK -40.15
GYDNLNK -54.01 CGMEAANK -44.11 AYIISEK -41.73
EATFDLK -55.05 FLVDAMK -44.76 YGPETEK -47.05
HFPIPGR -55.601 TGMSDVLT -51.78 TWYVVR -48.64
YDQPATE -56.13 FFGLIAR -51.88 DVFDSLK -48.89

GAQYGEAK -57.43 TGMSLTTL -52.84 WHLPDR -49.39
WTYLLQ -58.16 -ITLYVSK -52.10 TGAFNWK -57.68

Table 7: The top estimated peptides from the MCMC algorithm along with their corre-
sponding log posterior densities, log likelihood, log cleavage prior, log sequence prior,
log κ1 prior, and log κ2 prior for the peptide DLV ESAPAALK.

Peptide Log Posterior Log Likelihood Log Cleavage Log Sequence Log κ1 Log κ2

Densities Prior Prior Prior Prior
DLVESAPAALK 42.90 78.94 -11.25 -31.26 6.31 0.15
AVQIEQVQAQ 8.56 47.48 -8.57 -33.83 3.51 -0.03
DLVESPAAAIK 2.63 40.03 -11.28 -31.69 5.435 0.14
LTELASPAALQ -0.94 38.74 -10.70 -34.13 4.92 0.23
DLVESAPAAIK -1.65 35.86 -11.28 -31.69 5.38 0.07
QVDIVLGDVR -7.24 30.33 -11.50 -29.70 3.42 0.21
QVDIIVDGVR -14.54 23.36 -12.99 -29.67 4.61 0.16

EVPATTGGVGPE -16.30 29.28 -12.53 -37.61 4.52 0.04
QVDIPDDGVR -16.89 21.68 -12.99 -29.67 4.15 -0.04

EVPTATGGVGPE -17.22 27.76 -12.53 -37.61 4.89 0.27
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Table 8: The top estimated peptides from the MCMC algorithm along with their corre-
sponding log posterior densities for the peptideDLV ESAPAALK for three different
starting peptides. The true peptide is in bold.

Starting Peptide
DLVTDAPAAIQ LDVEYYALK LDVETGPAALK

Peptide Log Posterior Peptide Log Posterior Peptide Log Posterior
DDLTVAAPAIK 30.35 DLVESAPAALK 31.51 DLVDTAAPALK 35.76

DLVESAPAALK 21.05 VADPANGQLTQ 11.97 DLVESAPAALK 29.99
AVSPAWGNLAK 14.49 SPFSISYANK -5.26 LDVDVAGAPEK 7.25
MVIVTAAPLAK 3.01 DQSNDYDEK -8.41 LDVTIAGAPEK -5.06
DLTPVSVSPAK -1.97 DLVESAPIAAK -8.81 APVDIIQDDK -7.49
DDLLGTAPALK -4.03 DAEDMYLK -9.49 DLVDTAPAALK -9.00
NNVEASPAALK -5.12 ELEGNEPMPVK -9.64 MDMMEDLTK -15.49
DPVDWVAALK -6.57 VFPLSPDNPK -16.21 DLLTTAPAALK -19.25
DDLVTAAPAIK -15.07 DVLASEPASPK -23.99 DLLATTPAALK -20.61
DIVDENPLAK -15.66 DISIDPALGGR -24.47 EYTIEFIAK -21.00

Table 9: The best estimated peptides using the PepNovo Rank Score, PepNovo Score,
and our method (Bayesian posterior) . The last column is the true peptide. The number
of switches it takes to obtain the true peptide is in parentheses. (0) denotes the estimated
peptide is the true peptide. (*) denotes that the minimum number of switches cannot
be found since the estimated peptide does not have the correct total mass.

Best Estimated Peptides
PepNovo Rank Score PepNovo Score Bayes Log Posterior True Peptide

DNVESLEV (*) DLVESAPAALK (0) DLVESAPAALK (0) DLVESAPAALK
AQLQNQAQTK (1) VVLQELAQTK (1) AQLQEIAQTK (0) AQLQEIAQTK
SVANAEQMDR (0) WANAQEMDR (2) SVANAEQMDR (0) SVANAEQMDR

AELSELV (*) VTLSELVR (1) SIISELVR (0) SILSELVR
TGMSNVSK (0) TGMSNVSK (0) TGMSNVSK (0) TGMSNVSK
VSEGQTVR (0) VSEGQTVR (0) VSEGQTVR (0) VSEGQTVR

QASEVVSLNK (*) FEHAAASEVVSLGGK (3+) SGPLAGYPVVDIGVR (0) SGPLAGYPVVDLGVR
SQESTVTSQPAR (*) YHFEQESATSQVPK (2) YHFEQSTVTSQAPR (1) YHFEQSTVTSQPAR
MPPTEGETNQVL (*) MPPTEGETNQVLGSK (1) MPPTEGETGGQVLGSK (0) MPPTEGETGGQVLGSK
GYAGDTATTSEVK (0) GYAGDTATTSEVK (0) GYAGDTATTSEVK (0) GYAGDTATTSEVK

NPSSPSDVLSS (*) VLSSPSDPDSPVQEK (3+) LVSSPSTLNPGTNVAK (0) LVSSPSTLNPGTNVAK
LPDVGVVLTK (*) NTVFALVLVLAALTK (3+) QWFSPPLVTGVITK (3+) AFNEALPLTGVVLTK
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Figure 1: Line plot of pairs of intensities and m/z values for a given peptide.
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Figure 2: Theoretical spectrum for the peptide QVMELLQ using only b and y ions.
Here 1 represents the presence of an ion and 0 represents the absence of an ion. The b
ion is denoted by solid lines and the y ion is denoted by dashed lines.
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Figure 3: A display of the geometric mean of average relative abundances of bond
cleavages of b and y ions for any particular amino acid pair using Figure 1 in Huang
et al. (2004). The y-axis is the the single letter code of the amino acid on the N-terminal
amino acid and the x-axis is the single letter code of the amino acid on the C-terminal
amino acid.
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Figure 4: The joint empirical probabilities for all pairs of amino acids. For ease of
identifying the different joint empirical probabilities, the figure is shown on the log-
scale. The y-axis is the single letter code of the amino acid for the first amino acid in
the pair and the x-axis is the single letter code of the amino acid for the second amino
acid in the pair. The darker the square, the less probable the pair.
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Figure 5: The observed spectrum plotted against the theoretical spectrum for the pep-
tide TGMSNV SK. The theoretical spectrum is plotted below the zero axis and the
observed spectrum is plotted above the zero axis.
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Figure 6: The observed spectrum plotted against the theoretical spectrum for the pep-
tide DLV ESAPAALK. The theoretical spectrum is plotted below the zero axis and
the observed spectrum is plotted above the zero axis.
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